MATH 140 First Exam Practice Test

Problem 1. What is the domain of the function $f(x) = \frac{1}{\sqrt{8-x^2}}$?

A. $0 < x < \sqrt{8}$ B. $x > \sqrt{8}$ or $x < -\sqrt{8}$ C. $-\sqrt{8} < x < \sqrt{8}$ D. $-\sqrt{8} < x < 0$ E. All x but $\pm \sqrt{8}$

Problem 2. If $\lim_{x\to 0^-} f(x) = -2$ and f is continuous at x = 0, we can say that $\lim_{x\to 5} f(|x-5|) + 1$ is A. -4B. 0 C. 3 D. -1E. insufficient information; cannot be determined

Problem 3. What is $\lim_{t\to 0^+} \frac{t-|t|}{t+|t|}$? A. 0 B. 1/2 C. $+\infty$ D. 1 E. does not exist

Problem 4. Let C be a constant and $f(x) = \begin{cases} Cx^2 & x \ge 0 \\ -Cx^2 & x < 0. \end{cases}$ If the second derivative f''(0) exists, then C must be

A. 1 B. -1 C. 1/2 D. -1/2 E. 0 **Problem 5.** What, if any, are the points of discontinuity of the function

$$f(x) = \begin{cases} \frac{\sin(2x)}{x} & x < 0\\ 2 - x & 0 \le x \le 1\\ \frac{1}{|x - 2|} & x > 1, x \ne 2 \end{cases}$$

A. none

B. x = 0 only C. x = 1 only D. x = 2 only E. x = 0 and x = 2

Problem 6. What is $\lim_{x \to 1} \frac{\sin(2x-2)}{x^2-1}$? A. 1

B. 2

C. 0

D. $+\infty$

E. does not exist

Problem 7. If
$$g(w) = \cos\left(\frac{\pi}{\sqrt{w}+1}\right)$$
, then $g'(1) =$
A. 0
B. $\pi/8$
C. $-\pi/8$
D. $\pi/4$
E. $-\pi/4$.

Problem 8. A particle moves on the line so that its position at time $t \ge 0$ is given by $s(t) = \sqrt{2t^2 + 3} + t$. What is $\lim_{t \to +\infty} v(t)$?

A. $\sqrt{2}$ B. $+\infty$ C. 0 D. $\sqrt{2} + 1$ E. does not exist **Problem 9.** Let $f(x) = \sin(2x)$. Which horizontal line intersects the graph of f somewhere in the interval $[0, \frac{\pi}{2}]$ at an angle $\pi/3$?

A. y = 1/2B. y = -1/2C. y = 1/3D. y = -1/3E. y = 0

Problem 10. Find the output to the following Maple statement:

> limit((x^3+x^2+5x+5)/(x^2-1),x=-1); A. -3 B. 3 C. 1/3 D. -1/3 E. 1/6

Problem 11. If g(0) = 1, g'(0) = 3, f(1) = 9, f'(1) = 2, the derivative of the function $\sqrt{(f \circ g)(x)}$ at x = 0 is

A. 1/6 B. -1/6 C. -1/2 D. -1 E. 1

Problem 12. The function $f(x) = x^3 + 3x - 1$ has a root

- A. between -1 and 0
- B. between 0 and 1
- C. between 1 and 2
- D. between 2 and 3
- E. between 3 and 4