MATH 140 First Exam Practice Test

Problem 1. What is the domain of the function $f(x)=\frac{1}{\sqrt{8-x^{2}}}$?
A. $0<x<\sqrt{8}$
B. $x>\sqrt{8}$ or $x<-\sqrt{8}$
C. $-\sqrt{8}<x<\sqrt{8}$
D. $-\sqrt{8}<x<0$
E. All x but $\pm \sqrt{8}$

Problem 2. If $\lim _{x \rightarrow 0^{-}} f(x)=-2$ and f is continuous at $x=0$, we can say that $\lim _{x \rightarrow 5} f(|x-5|)+1$ is
A. -4
B. 0
C. 3
D. -1
E. insufficient information; cannot be determined

Problem 3. What is $\lim _{t \rightarrow 0^{+}} \frac{t-|t|}{t+|t|}$?
A. 0
B. $1 / 2$
C. $+\infty$
D. 1
E. does not exist

Problem 4. Let C be a constant and $f(x)=\left\{\begin{array}{ll}C x^{2} & x \geq 0 \\ -C x^{2} & x<0 .\end{array}\right.$ If the second derivative $f^{\prime \prime}(0)$ exists, then C must be
A. 1
B. -1
C. $1 / 2$
D. $-1 / 2$
E. 0

Problem 5. What, if any, are the points of discontinuity of the function

$$
f(x)= \begin{cases}\frac{\sin (2 x)}{x} & x<0 \\ 2-x & 0 \leq x \leq 1 \\ \frac{1}{|x-2|} & x>1, x \neq 2\end{cases}
$$

A. none
B. $x=0$ only
C. $x=1$ only
D. $x=2$ only
E. $x=0$ and $x=2$

Problem 6. What is $\lim _{x \rightarrow 1} \frac{\sin (2 x-2)}{x^{2}-1}$?
A. 1
B. 2
C. 0
D. $+\infty$
E. does not exist

Problem 7. If $g(w)=\cos \left(\frac{\pi}{\sqrt{w}+1}\right)$, then $g^{\prime}(1)=$
A. 0
B. $\pi / 8$
C. $-\pi / 8$
D. $\pi / 4$
E. $-\pi / 4$.

Problem 8. A particle moves on the line so that its position at time $t \geq 0$ is given by $s(t)=\sqrt{2 t^{2}+3}+t$. What is $\lim _{t \rightarrow+\infty} v(t)$?
A. $\sqrt{2}$
B. $+\infty$
C. 0
D. $\sqrt{2}+1$
E. does not exist

Problem 9. Let $f(x)=\sin (2 x)$. Which horizontal line intersects the graph of f somewhere in the interval $\left[0, \frac{\pi}{2}\right]$ at an angle $\pi / 3$?
A. $y=1 / 2$
B. $y=-1 / 2$
C. $y=1 / 3$
D. $y=-1 / 3$
E. $y=0$

Problem 10. Find the output to the following Maple statement:
$>\operatorname{limit}\left(\left(x^{\wedge} 3+x^{\wedge} 2+5 x+5\right) /\left(x^{\wedge} 2-1\right), x=-1\right)$;
A. -3
B. 3
C. $1 / 3$
D. $-1 / 3$
E. $1 / 6$

Problem 11. If $g(0)=1, g^{\prime}(0)=3, f(1)=9, f^{\prime}(1)=2$, the derivative of the function $\sqrt{(f \circ g)(x)}$ at $x=0$ is
A. $1 / 6$
B. $-1 / 6$
C. $-1 / 2$
D. -1
E. 1

Problem 12. The function $f(x)=x^{3}+3 x-1$ has a root
A. between -1 and 0
B. between 0 and 1
C. between 1 and 2
D. between 2 and 3
E. between 3 and 4

