MATH 140 Second Exam Practice Test

Problem 1. The equation $x^3 - 3x^2 = a$ has 3 distinct roots exactly when

A. a > 0 or a < -4B. -4 < a < 0C. 0 < a < 4D. -4 < a < 4E. a > 4 or a < -4

Problem 2. The skeleton of a box-shaped frame whose base is an x-by-x square and whose height is y is to be made using a piece of wire of length 16 inches. What dimensions will maximize the volume of this frame?

A.
$$x = 1, y = 2$$

B. $x = \frac{3}{2}, y = 1$
C. $x = \frac{5}{4}, y = \frac{3}{2}$
D. $x = \frac{2}{3}, y = \frac{8}{3}$
E. $x = \frac{4}{3}, y = \frac{4}{3}$

Problem 3. Let f be a differentiable function and f(0) = 2. Suppose that we know $0 \le f'(x) \le 1$ for all $-\infty < x < +\infty$. Which of the following CANNOT be possibly true?

A.
$$f(1) = 2$$
.
B. $f(2) = 4$
C. $f(-1) = 1$
D. $f(-2) = -1$
E. $f(-10) = 2$

Problem 4. What is the indefinite integral $\int \frac{2x}{(x^2+1)^2} dx$? A. $\frac{x^2}{x^2+1} + C$ B. $\frac{-2x}{x^2+1} + C$ C. $\frac{-1}{x^2+1} + C$ D. Both A and B
E. Both A and C

Problem 5. The average value of the function $f(x) = \sin(\pi x)$ on the interval [0, b] is zero exactly when

A. *b* is an odd integer B. *b* is an even integer C. *b* is an integer D. *b* is an odd multiple of 1/2 E. *b* is an odd multiple of $\pi/2$ **Problem 6.** What is the shortest distance from the point (0,0) to the curve $y = \frac{2}{x^2}$? A. $\sqrt{2}$ B. $\sqrt{3}$ C. $\sqrt{6}$ D. $\sqrt{8}$ E. $\sqrt{12}$ **Problem 7.** What is the area of the region enclosed by the graphs of $f(x) = 4 - x^2$ and g(x) = x + 2?

A.
$$\frac{9}{2}$$
 B. $\frac{7}{2}$ C. $\frac{5}{2}$ D. $\frac{3}{2}$ E. $\frac{1}{2}$

Problem 8. Suppose that f is a continuous function and $\int_{1}^{9} f(x) dx = 6$. Then the value of $\int_{1}^{3} x f(x^{2}) dx$ is A. 6 B. 3 C. 2 D. 1 E. 0

Problem 9. Find the output of the following Maple statement:
> int(1/(cos(3*u))^2,u=0..Pi/9);

A.
$$\sqrt{3}$$
 B. $\frac{1}{\sqrt{3}}$ C. $\frac{1}{3}$ D. $\frac{1}{3\sqrt{3}}$ E. $\frac{1}{9}$

Problem 10. If h is very small, then $\tan\left(\frac{\pi}{4}+h\right)$ is approximately

A.
$$1 + \sqrt{2}h$$
 B. $\sqrt{2} + h$ C. $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}h$ D. $2h$ E. $1 + 2h$

Problem 11. If $F(x) = \int_0^{x^2} \frac{\sin t}{t+1} dt$, what is the derivative $F'(\sqrt{\pi})$? A. 0 B. 1 C. π D. $\sqrt{\pi}$ E. -1

Problem 12. What is the global maximum of the function $f(x) = x^3 - x^2 - x$ on the interval [-10, 2]?

A. 2 B.
$$\frac{5}{27}$$
 C. 1 D. $\frac{1}{27}$ E. $\frac{1}{3}$