MATH 140 Second Exam Practice Test

Problem 1. The equation $x^{3}-3 x^{2}=a$ has 3 distinct roots exactly when
A. $a>0$ or $a<-4$
B. $-4<a<0$
C. $0<a<4$
D. $-4<a<4$
E. $a>4$ or $a<-4$

Problem 2. The skeleton of a box-shaped frame whose base is an x-by- x square and whose height is y is to be made using a piece of wire of length 16 inches. What dimensions will maximize the volume of this frame?
A. $x=1, y=2$
B. $x=\frac{3}{2}, y=1$
C. $x=\frac{5}{4}, y=\frac{3}{2}$
D. $x=\frac{2}{3}, y=\frac{8}{3}$
E. $x=\frac{4}{3}, y=\frac{4}{3}$

Problem 3. Let f be a differentiable function and $f(0)=2$. Suppose that we know $0 \leq f^{\prime}(x) \leq 1$ for all $-\infty<x<+\infty$. Which of the following CANNOT be possibly true?
A. $f(1)=2$.
B. $f(2)=4$
C. $f(-1)=1$
D. $f(-2)=-1$
E. $f(-10)=2$

Problem 4. What is the indefinite integral $\int \frac{2 x}{\left(x^{2}+1\right)^{2}} d x$?
A. $\frac{x^{2}}{x^{2}+1}+C$
B. $\frac{-2 x}{x^{2}+1}+C$
C. $\frac{-1}{x^{2}+1}+C$
D. Both A and B
E. Both A and C

Problem 5. The average value of the function $f(x)=\sin (\pi x)$ on the interval $[0, b]$ is zero exactly when
A. b is an odd integer
B. b is an even integer
C. b is an integer
D. b is an odd multiple of $1 / 2$
E. b is an odd multiple of $\pi / 2$

Problem 6. What is the shortest distance from the point $(0,0)$ to the curve $y=\frac{2}{x^{2}}$?
A. $\sqrt{2}$
B. $\sqrt{3}$
C. $\sqrt{6}$
D. $\sqrt{8}$
E. $\sqrt{12}$

Problem 7. What is the area of the region enclosed by the graphs of $f(x)=4-x^{2}$ and $g(x)=x+2$?
A. $\frac{9}{2}$
B. $\frac{7}{2}$
C. $\frac{5}{2}$
D. $\frac{3}{2}$
E. $\frac{1}{2}$

Problem 8. Suppose that f is a continuous function and $\int_{1}^{9} f(x) d x=6$. Then the value of $\int_{1}^{3} x f\left(x^{2}\right) d x$ is
A. 6
B. 3
C. 2
D. 1
E. 0

Problem 9. Find the output of the following Maple statement:
$>\operatorname{int}\left(1 /(\cos (3 * u))^{\wedge} 2, u=0 . . \operatorname{Pi} / 9\right)$;
A. $\sqrt{3}$
B. $\frac{1}{\sqrt{3}}$
C. $\frac{1}{3}$
D. $\frac{1}{3 \sqrt{3}}$
E. $\frac{1}{9}$

Problem 10. If h is very small, then $\tan \left(\frac{\pi}{4}+h\right)$ is approximately
A. $1+\sqrt{2} h$
B. $\sqrt{2}+h$
C. $\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} h$
D. $2 h$
E. $1+2 h$

Problem 11. If $F(x)=\int_{0}^{x^{2}} \frac{\sin t}{t+1} d t$, what is the derivative $F^{\prime}(\sqrt{\pi})$?
A. 0
B. 1
C. π
D. $\sqrt{\pi}$
E. -1

Problem 12. What is the global maximum of the function $f(x)=x^{3}-x^{2}-x$ on the interval $[-10,2]$?
A. 2
B. $\frac{5}{27}$
C. 1
D. $\frac{1}{27}$
E. $\frac{1}{3}$

