MATH 140 Practice Final

1. What is the domain of the function defined by $f(x)=\ln (\ln x)$? (Answer: all $x>1$)
2. If $h(x)=3+x^{3}+e^{2 x}$, what are the values of $h^{-1}(4)$ and $\left(h^{-1}\right)^{\prime}(4)$? (Answer: $h^{-1}(4)=0$ and $\left(h^{-1}\right)^{\prime}(4)=\frac{1}{2}$)
3. What is the equation of the line tangent to the ellipse $3 x^{2}+4 y^{2}=12$ at the point $\left(-1, \frac{3}{2}\right)$? (Answer: $y=\frac{1}{2} x+2$)
4. If h is very small, what is the best approximation to the value of $\sin ^{-1}\left(\frac{1}{2}+h\right)$? (Hint: Linearization; Answer: $\frac{\pi}{6}+\frac{2}{\sqrt{3}} h$)
5. What are the global extrema of the function $f(x)=x^{4}-4 x^{2}+5$ on the interval $[-2,2]$? (Answer: global minimum is 1 and global maximum is 5)
6. What is $\lim _{x \rightarrow 0} \frac{2^{x}-\cos \left(x^{2}\right)}{x}$? (Hint: L'Hopital; Answer: $\ln 2$)
7. The velocity of a car chased by the police is given by $v(t)=t^{2} e^{-t}$ $\mathrm{ft} / \mathrm{sec}$, where t is the time in seconds. What is the average velocity of the car during the first 2 seconds of this chase? (Hint: Integration by parts; Answer: $1-5 e^{-2} \mathrm{ft} / \mathrm{sec}$)
8. If $f(x)=(\sin x)^{x}$, what is $\frac{d f}{d x}\left(\frac{\pi}{2}\right)$? (Hint: Logarithmic differentiation; Answer: 0)
9. If f is a continuous function such that

$$
x^{2} \sin (\pi x)=\int_{1}^{x^{2}} f(\sqrt{t}) d t
$$

for all x, what is $f(x)$? (Hint: Take derivative of both sides with respect to x; Answer: $\left.f(x)=\sin (\pi x)+\frac{\pi}{2} x \cos (\pi x)\right)$
10. What is $\int \frac{2 x^{2}-x+9}{x^{3}-x^{2}+4 x-4} d x$? (Hint: Partial fractions; Answer: $\left.2 \ln |x-1|-\frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)+C\right)$
11. What is $\int \sin \sqrt{x} d x$? (Hint: First a substitution, then integration by parts; Answer: $-2 \sqrt{x} \cos \sqrt{x}+2 \sin \sqrt{x}+C$)
12. What is the numerical value of $\int_{0}^{\frac{\pi}{2}} \frac{\sin \theta}{\cos ^{2} \theta+4} d \theta$? (Hint: Substitution; Answer: $\left.\frac{1}{2} \tan ^{-1}\left(\frac{1}{2}\right)\right)$
13. What is the numerical value of $\int_{-\frac{1}{3}}^{\frac{1}{3}} \sqrt{1-9 u^{2}} d u$? (Hint: Use a trigonometric substitution; Answer: $\frac{\pi}{6}$)
14. A radioactive compound has half-life of T hours. An experiment starts with 16 grams of this compound; after 2 days only 0.25 grams of the sample is left. What is T ? (Answer: $T=8$ hours)
15. Car A is leaving an intersection at 20 mph heading north. Car B is approaching this intersection at 30 mph heading west. How fast is the distance between them changing at the moment when A is 3 miles north and B is 4 miles east of the intersection? (Answer: At that moment, the distance is decreasing at the rate of 12 mph)

