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Let k denote the millity of T. If vy, . .., vy are k independent solutions of the homogeneous
system T(x) = O, and if b is one particular solution of the nonhomogeneous system T(x) = c,
then the general solution of the nonhomogeneous system is

x=b+to+ -+t

where 1y, ..., 1, are arbitrary scalars.

This theorem does not tell us how to decide if a nonhomogeneous system has a particular
solution b, nor does it tell us how to determine solutions v, , . .. , 2, of the homogeneous
system. It does tell us what to expect when the nonhomogeneous system has a solution.
The following example, although very simple, illustrates the theorem.

EXAMPLE. The system x + y = 2 has for its associated homogencous system the equation
x+y=0. Therefore, the null space consists of all vectors in ¥; of the form (1, —1),
where ¢ is arbitrary. Since (t, —) = #(1, —1), this is a one-dimensional subspace of ¥,
with basis (1, —1). A particular solution of the nonhomogeneous system is (0, 2). There-
fore the general solution of the nonhomogencous system is given by

N =02+11,—1) or x=t, y=2-1,

where ¢ is arbitrary.

16.18 Computation techniques

We turn now to the problem of actually computing the solutions of a nonhomogeneous
linear system. Although many methods have been developed for attacking this problem,
all of them require considerable computation if the system is large. For example, to solve
a system of ten equations in as many unknowns can require several hours of hand com-
putation, even with the aid of a desk calculator.

‘We shall discuss a widely-used method, known as the Gauss-Jordan elimination method,
which is relatively simple and can be easily programmed for high-speed electronic computing
machines. The method consists of applying three basic types of operations on the equations
of a linear system:

(1) Interchanging two equations;

(2) Multiplying all the terms of an equation by a nonzero scalar;

(3) Adding to0 one equation a multiple of another.

Each time we perform one of these operations on the system we obtain a new system having
exactly the same solutions. Two such systems are called equivalent. By performing these
operations over and over again in a systematic fashion we finally arrive at an equivalent
system which can be solved by inspection.

‘We shall illustrate the method with some specific examples. It will then be clear how the
method s to be applied in general.

EXAMPLE 1. A system with a unique solution. Consider the system
2x—Sy+4z=—3
x—2+4 z=5
x—4y+6z=10.
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This particular system has a unique solution, x = 124, y = 75, z = 31, which we shall
obtain by the Gauss-Jordan elimination process. To save labor we do not bother to copy
the letters x, y, z and the equals sign over and over again, but work instead with the aug-
mented matrix

2 -5 4| -3
(16.24) 1 21| 5
1 —4 6| 10

obtained by adjoining the right-hand members of the system to the cocfficient matrix. The
three basic types of i ioned above are on the rows of th

matrix and are called row operations. At any stage of the process we can put the letters
X, y, z back again and insert equals signs along the vertical lin to obtain equations. Our
ultimate goal is to arrive at the augmented matrix

1.0 0124
(16.25) o107
00 1] 31
after a ion of row ions. The ponding system of equations is x = 124,

» =75, z = 31, which gives the desired solution.

‘The first step is to obtain a 1 in the upper left-hand corner of the matrix. We can do this
by interchanging the first row of the given matrix (16.24) with either the second or third
row. Or, we can multiply the first row by 3. Interchanging the first and sccond rows, we get

1 =21 5
2 =5 4|3
1 —4 6| 10

The next step is to make all the remaining entries in the first column equal to zero, leaving
the first row intact. To do this we multiply the first row by —2 and add the result to the
second row. Then we multiply the first row by —1 and add the result to the third row.
After these two operations, we obtain

1 21| 5
(16.26) 0 —1 2| -13].
0 =25 )
i -1 2| -13 s
Now we repeat the process on the smaller matrix S| 5| which appears

adjacent to the two zeros. We can obtain a 1 in its upper left-hand corner by multiplying
the second row of (16.26) by — 1. This gives us the matrix

1 =2 1| ¥

0 1 =213
0 -2 5|5
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Multiplying the second row by 2 and adding the result to the third, we get

1 -2 1|5
(16.27) o 1 —2|13
0 0 131

At this stage, the corresponding system of equations is given by

x—2+ z=5
y—22

These equations can be solved in succession, starting with the third one and working
backwards, to give us

z=31, y=13+2=134+62=75 x=5+2—z=5+150—31=124.
Or, we can continue the Gauss-Jordan process by making all the entries zero above the

diagonal elements in the second and third columns. Multiplying the second row of (16.27)
by 2 and adding the result to the first row, we obtain

10 =3|31
01 =213
00 1131

Finally, we multiply the third row by 3 and add the result to the first row, and then multiply
the third row by 2 and add the result to the second row to get the matrix in (16.25).

EXAMPLE 2. A system with more than one solution. Consider the following system of 3
equations in 5 unknowns:

2 —Sy+dz+ u—v=-3
(16.28) x—2%+ z— uto=>5
x—4y+6z+2u—0v=10.
The corresponding augmented matrix is
54 1 —1]-3

1 =21 -1 1 5
1 -4 6 2 -1 10

The coefficients of x, y, z and the right-hand members are the same as those in Example 1.
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If we perform the same row operations used in Example 1, we finally arrive at the augmented
matrix

100 —16 19124
010 =9 11|75
001 =3 4|31

The corresponding system of equations can be solved for x, y, and  in terms of u and v,
giving us
x =124 + 16u — 19
y= 15+ u—1llv
z= 314 3u— 4.
If we let u = 1, and v = t,, where #, and , are arbitrary real numbers, and determine
X, 7, 2 by these equations, the vector (¥, y, 2 u,v) in ¥; given by
(69> 2 4 0) = (124 + 161, — 196,75 + 91, — 116, 31 + 3, — 41z, 11, 1)
s a solution. By separating the parts involving f, and f, , we can rewrite this as follows:
(3, 21, 0) = (124,75,31,0,0) + £,(16,9,3, 1,0) + t5(—19, =11, =4,0,1).

This equation gives the general solution of the system. The vector (124, 75, 31,0,0) is a
particular solution of the nonhomogeneous system (16.28). The two vectors (16,9,3, 1,0)
and (=19, —11, —4, 0, 1) are solutions of the corresponding homogeneous system. Since
they are independent, they form a basis for the space of all solutions of the homogeneous
system.

EXAMPLE 3. A system with no solution. Consider the system
2 — Sy +4z=—3

(16.29) x—2%+ z= 5
x—dy+5z= 10.

This system is almost identical to that of Example 1 except that the coefficient of z in the
third equation has been changed from 6 to 5. The corresponding augmented matrix is

2 =5 4| -3
1 =21 5
1 —4 5| 10

Applying the same row operations used in Example 1 to transform (16.24) into (16.27), we
arrive at the augmented matrix

1 -2 1] 5

(16.30) 0 1 =2|13
0 0 031
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When the bottom row is expressed as an equation, it states that 0 = 31. Therefore the
original system has no solution since the two systems (16.29) and (16.30) are equivalent.

In cach of the foregoing examples, the number of equations did not exceed the number
of unknowns. If there are more equations than unknowns, the Gauss-Jordan process is
still applicable. For cxample, suppose we consider the system of Example 1, which has the
solution x = 124, y = 75, z = 31. If we adjoin a new equation to this system which is also
satisfied by the same triple, for example, the equation 2x — 3y + z = 54, then the elimina-
tion process leads to the agumented matrix

10 0]124)
01075
00 1|31
000/ 0

with a row of zeros along the bottom. But if we adjoin a new equation which is not satisfied
by the triple (124, 75, 31), for example the equation x + y + z = 1, then the elimination
process leads to an augmented matrix of the form

10 0]124]
o107
oo 1|31
000]| a

where a 52 0. The last row now gives a contradictory equation 0 = @ which shows that
the system has no solution.

16.19 Tnverses of square matrices

Let A = (a) be a square n X n matrix. If there is another n X n matrix B such that
BA = I, where Iis the n x n identity matrix, then A is called nonsingular and B is called a
left inverse of A.

Choose the usual basis of unit coordinate vectors in ¥, and let T: ¥, — ¥, be the linear
transformation with matrix m(T) = A. Then we have the following.

THEOREM 16.20. The matrix A is nonsingular if and only if T is invertible. If BA =1I,
then B = m(T-Y).

Proof. Assume that 4 is nonsingular and that BA = L. We shall prove that T(x) = O
implies x = O. Given x such that T(x) = O, let X be the n X 1 column matrix formed from
the components of x. Since T(x) = O, the matrix product AX is an n X 1 column matrix
consisting of zeros, so B(AX) is also a column matrix of zeros. But B(4X) = (BA)X =
IX = X, so every component of x is 0. Therefore, T'is invertible, and the equation 77 = I
implies that m(Tym(T—) = I or Am(T-%) = L. Multiplying on the left by B, we find
m(T-Y) = B. Conversely, if T is invertible, then T3 is the identity transformation so
m(T-9m(T) is the identity matrix. Therefore A is nonsingular and m(T-)4 = I.



612 Linear transformations and matrices

All the properties of invertible lincar ions have their parts for non-
singular matrices. In particular, left inverses (if they cxist) are unique, and every left
inverse is also a right inverse. In other words, if A is nonsingular and BA = I, then
AB = I. Wecall Bthe inverse of A and denote it by A%, The inverse 4~ is also nonsingular
and ifs inverse is A.

Now we show that the problem of actually determining the entries of the inverse of a
nonsingular matrix is equivalent to solving r separate nonhomogeneous linear systems.

Let A = (a,) be nonsingular and let A% = (5,) be its inverse. The entries of 4 and
A~V are related by the n? equations

(16.31) g‘a,kbg, =0y,

where 6, = 1if i = j, and &, = 0if i 5 j. For each fixed choice of j, we can regard this
as a nonhomogeneous system of r linear equations in n unknowns by, by, . . . , by . Since
A4 is nonsingular, each of these systems has a unique solution, the jth column of B. Al
these systems have the same coefficient-matrix A and differ only in their right members.
For example, if A isa 3 x 3 matrix, there are 9 equations in (16.31) which can be expressed
as 3 separate linear systems having the following augmented matrices:

an @y a1 an G |0 an Gy ay|0
Gy ay a0, Gy Gy au|l| Ay Gy an (0
Ay Gy 5|0, a3 G a0, an ay am|l

If we apply the Gauss-Jordan process, we arrive at the respective augmented matrices

1.0 0|by, 1.0 0|by 1.0 0|by
0 1 0fby| 0 1 0|byl| 0 1 0|by
00 1|by 00 1|by 00 1|y

In actual practice we exploit the fact that all three systems have the same coefficient-matrix
and solve all three systems at once by working with the enlarged matrix

ay @ ag|l 0 O
ay am a|0 1 0
ay gy ag|0 0 1
The climination process then leads to
10 0[by by by
0 1 0|by b bu
0 0 1|by by by

‘The matrix on the right of the vertical line is the required inverse. The matrix on the left
of the line is the 3 x 3 identity matrix.
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It is not necessary to know in advance whether A is nonsingular. If 4 is singular (not
nonsingular), we can still apply the Gauss-Jordan method, but somewhere in the process
one of the diagonal elements will become zero, and it will not be possible to transform 4
to the identity matrix.

16.20 Exercises

Apply the Gauss-Jordan elimination process to each of the following systems. If a solution
exists, determine the general solution.

L x+y+3z=5 5.3 -2y +5z2+ u
2 -y +dz=11 x+ y—3z+2u
—y+ z=3 6x+ y—dz+3u=1
2.3+ + z=1 6. x+y—3z+ u=5
Sx+3y+3z=2 2x-y+ z—2u=2
x4+ y—z=1 Tx +y =Tz + 3
L3+ + z=1 Tox+ y+2z+ I+ =0
S5x +3y+3z2=2 2x +2y +7z + 1u + 140
Tx +4y +52=3. 3x 43y + 6z + 10u + 150 =
43+ + z=1 8. x—2y+ z+2u=-2
Sx+3y+3z=2 243y — z—Su= 9
Tx +dy+52=3 4x— y+ z—u= 5
x+ y— z=0. Sx—3y+2+ u= 3
9. Prove that the system x +y + 2z =2, 2x —y +3z =2, Sx — y +az = 6, has a unique
solution if a 8. Find all solutions when @ = 8.
10. (a) Determine all solutions of the system
Sx 42y —6z+2u=—1
x— y+ z— u=-2.
(b) Determine all solutions of the system
Sx+2y — 6z +2u=~1
X—y+ z— u=-2
x+ y+ z = 6
11. This exercise tells how to determine all nonsingular 2 x 2 matrices. Prove that

a b d —b
[ ][ ]=(ad*bc)l.
¢ dlfl—c a
a
c

b
Deduce lhal[ d:‘ is nonsingular if and only if ad — be 5 0, in which case its inverse is

1 d -b
ad—bel —c af




