Math 360 Homework 6

If you make people think they are thinking, they will love you. But if you really make them think, they will hate you.

Problem 1. Which of the following sets is a vector space with the given addition and scalar multiplication?
(a) The set of all non-negative real numbers with usual addition and multiplication.
(b) The set of all functions $f:[-1,1] \rightarrow \mathbb{R}$ which satisfy $f(0)=0$, with the usual addition of functions and multiplication of functions by real numbers.
(c) The set of all sequences $x=\left\{x_{n}\right\}$ of real numbers for which $\left\{n x_{n}\right\}$ is a bounded sequence. Addition and scalar multiplication are defined by $x+y=\left\{x_{n}+y_{n}\right\}$ and $\alpha x=\left\{\alpha x_{n}\right\}$.

Problem 2. For a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, define

$$
\|x\|_{\max }=\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right) .
$$

Carefully prove that $\|\cdot\|_{\max }$ is in fact a norm.
Problem 3. For this problem, you should remember the fact that the absolute value of every continuous function $f:[a, b] \rightarrow \mathbb{R}$ reaches its maximum somewhere in the interval $[a, b]$; that is, there is a point $c \in[a, b]$ such that $|f(x)| \leq|f(c)|$ for all $x \in[a, b]$. In this case we write $|f(c)|=\max _{x \in[a, b]}|f(x)|$. (We will discuss this property and its generalizations later in this course.) Now fix some interval $[a, b]$ and let $C[a, b]$ be the vector space of all continuous functions $f:[a, b] \rightarrow \mathbb{R}$. Define

$$
\|f\|_{\infty}=\max _{x \in[a, b]}|f(x)| .
$$

(a) Prove that $\|\cdot\|_{\infty}$ is in fact a norm on $C[a, b]$.
(b) If $[a, b]=[0,1], f(x)=x^{3}$, and $g(x)=x$, what is the distance $\|f-g\|_{\infty}$?

Problem 4. Two vectors x, y in an inner product space $(V,\langle\cdot, \cdot\rangle)$ are called orthogonal if $\langle x, y\rangle=0$. If $V=C[-1,1]$ with the inner product $\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x$, show that every even function $f \in V$ is orthogonal to every odd function $g \in V$.
Problem 5. Let a_{1}, \ldots, a_{n} be n positive real numbers such that $\sum_{i=1}^{n} a_{i}^{2} \leq 1 / n$. Show that $\sum_{i=1}^{n} a_{i} \leq 1$. (Hint: Use Cauchy-Schwarz inequality.)

Problem 6. Let V be a vector space with an inner product $\langle\cdot, \cdot\rangle$ and the induced norm $\|x\|=\sqrt{\langle x, x\rangle}$. Show that the parallelogram law holds:

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) \quad \text { for all } x, y \in V .
$$

How do you interpret this geometrically in the case $V=\mathbb{R}^{2}$ with the standard inner product and norm?
Problem 7. Again, let V be a vector space with an inner product $\langle\cdot, \cdot\rangle$ and the induced norm $\|\cdot\|$. Suppose there is a constant $M>0$ such that

$$
\begin{equation*}
|\langle x, y\rangle| \leq M \quad \text { whenever }\|x\|=\|y\|=1 \tag{*}
\end{equation*}
$$

Show that

$$
|\langle x, y\rangle| \leq M t^{2} \quad \text { whenever }\|x\| \leq t \text { and }\|y\| \leq t
$$

(Hint: If $\|x\|=0$ or $\|y\|=0$, there is nothing to prove. Otherwise, consider the vectors $\frac{1}{\|x\|} x$ and $\frac{1}{\|y\|} y$ and apply $(*)$ to them.)

