Math 360 Homework 6

If you make people think they are thinking, they will love you. But if you really make them think, they will hate you.

Problem 1. Which of the following sets is a vector space with the given addition and scalar multiplication?

- (a) The set of all non-negative real numbers with usual addition and multiplication.
- (b) The set of all functions $f : [-1, 1] \to \mathbb{R}$ which satisfy f(0) = 0, with the usual addition of functions and multiplication of functions by real numbers.
- (c) The set of all sequences $x = \{x_n\}$ of real numbers for which $\{nx_n\}$ is a bounded sequence. Addition and scalar multiplication are defined by $x + y = \{x_n + y_n\}$ and $\alpha x = \{\alpha x_n\}$.

Problem 2. For a vector $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, define

$$||x||_{\max} = \max(|x_1|, \dots, |x_n|).$$

Carefully prove that $\|\cdot\|_{\max}$ is in fact a norm.

Problem 3. For this problem, you should remember the fact that the absolute value of every continuous function $f : [a, b] \to \mathbb{R}$ reaches its maximum somewhere in the interval [a, b]; that is, there is a point $c \in [a, b]$ such that $|f(x)| \leq |f(c)|$ for all $x \in [a, b]$. In this case we write $|f(c)| = \max_{x \in [a, b]} |f(x)|$. (We will discuss this property and its generalizations later in this course.) Now fix some interval [a, b] and let C[a, b] be the vector space of all continuous functions $f : [a, b] \to \mathbb{R}$. Define

$$||f||_{\infty} = \max_{x \in [a,b]} |f(x)|$$

- (a) Prove that $\|\cdot\|_{\infty}$ is in fact a norm on C[a, b].
- (b) If [a, b] = [0, 1], $f(x) = x^3$, and g(x) = x, what is the distance $||f g||_{\infty}$?

Problem 4. Two vectors x, y in an inner product space $(V, \langle \cdot, \cdot \rangle)$ are called *orthogonal* if $\langle x, y \rangle = 0$. If V = C[-1, 1] with the inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx$, show that every even function $f \in V$ is orthogonal to every odd function $g \in V$.

Problem 5. Let a_1, \ldots, a_n be *n* positive real numbers such that $\sum_{i=1}^n a_i^2 \leq 1/n$. Show that $\sum_{i=1}^n a_i \leq 1$. (Hint: Use Cauchy-Schwarz inequality.) **Problem 6.** Let V be a vector space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $||x|| = \sqrt{\langle x, x \rangle}$. Show that the *parallelogram law* holds:

 $\|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2) \quad \text{for all } x, y \in V.$

How do you interpret this geometrically in the case $V = \mathbb{R}^2$ with the standard inner product and norm?

Problem 7. Again, let V be a vector space with an inner product $\langle \cdot, \cdot \rangle$ and the induced norm $\|\cdot\|$. Suppose there is a constant M > 0 such that

$$|\langle x, y \rangle| \le M \qquad \text{whenever } \|x\| = \|y\| = 1. \tag{(*)}$$

Show that

$$|\langle x, y \rangle| \le Mt^2$$
 whenever $||x|| \le t$ and $||y|| \le t$.

(Hint: If ||x|| = 0 or ||y|| = 0, there is nothing to prove. Otherwise, consider the vectors $\frac{1}{||x||}x$ and $\frac{1}{||y||}y$ and apply (*) to them.)