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Lecture 1.

(1) ARiemann surfac« is a connected complex manifold of dimensiorThis means
that X is a connected Hausdorff space, locally homeomorphiitpwhich is
equipped with @omplex structurd (U;, z;) }. Here eacli; is an open subset of,

the unionJ U; is X, eachlocal coordinatez; : U; . Disa homeomorphism, and
whenevel/; N U; # () the change of coordinatez; * : z;(U; N U;) — z;(U; N Uj)
is holomorphic.

In the above definition we have not assumed tkiahas a countable basis for

its topology. But this is in fact true and follows from the existence of a complex
structure (Rado’s Theorem).

(2) Amapf : X — Y between Riemann surfaces is holomorphioif f o 271 is a
holomorphic map for each pair of local coordinatesn X andw onY for which
this composition makes sense. We often denote this compositianbyf(z). A
holomorphic mayy is called abiholomorphisnor conformal isomorphisri it is a
homeomorphism, in which cage ! is automatically holomorphic.

(3) Examples of Riemann surfaces: The complex piande unit diskD, the Riemann

sphereC, complex toriT, = C/(Z & 7Z) with Im(7) > 0, open connected subsets
of Riemann surfaces such as the complement of a Cantor €et in

(4) The UniformizationATheorem: Every simply connected Riemann surface is confor-
mally isomorphic taC, C, or D.

(5) Classical form of Schwarz Lemma: ff: D — D is holomorphic andf(0) = 0,
then|f’(0)| < 1. If |f/(0)| = 1, thenf is a rigid rotation around the origin.

(6) If f:D(p,d) — D(q,e) is holomorphic, themnf'(p)| < <.

(7) Corollary (Liouville): Every bounded holomorphic functiéh— C must be con-
stant.

Lecture 2.

(1) Theautomorphism groupf a Riemann surfac& is the group of all conformal
isomorphismsX — X. Itis denoted by AutX).
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(2) Theorem:

Aut(C) = {z — & +2 L a,b,c,d € Candad — be # 0} = PSLy(C)

cz +

In particular, Au(@) is a connected complex Lie group of dimensigirhomeo-
morphic to the producRP? x R? (this follows, for example, from the Iwasawa
Decomposition).

(3) Theorem:
Aut(C) ={z+—az+b:a,be Canda # 0}

Thus, AufC) can be identified with the subgroup of /{ﬁt) consisting of the maps
which fix the point at infinity. It follows that AYtC) is a connected complex Lie
group of dimensior2, homeomorphic to the produ€t' x C.

(4) Theorem:

Z—a

1—az

Aut(]D):{zH)\< >:aeID>and/\eCwith])\|:1}

Thus, AutD) can be identified with the identity component of the subgroup of
Aut(C) consisting of the maps which commute with the reflectior- L. In
particular, AutD) is a connected real Lie group of dimensigrhomeomorphic to

the product) x S!.
(5) Theorem:
az+b
cz+d
Thus, AutH) can be identified with the identity component of the subgroup of

~

Aut(C) consisting of the maps which commute with the reflection Z.

AutH) = {z — a,b,c,d € Randad — bc > 0} = PSLy(R)

(6) The action of Au(l@) onC is simply 3-transitive. Similarly, the action of Aut)
on C is simply 2-transitive. The action of AYD) on D is transitive but not simply
transitive.

~

(7) Every non-identityy € Aut(C) has two fixed points counting multiplicities. &
has a double fixed point, it can be conjugated to the translatienz + 1. In this
case we call iparabolic If o has two distinct fixed points, it can be conjugated to
the linear map: — Az for some) € C ~\ {0,1}. The pair{\, \"!} is uniquely
determined by. We callo elliptic if |\| = 1, hyperbolicif A € R and|\| # 1, and
loxodromicotherwise.

~

(8) An elementr € Aut(C) can be thought of as a matrix in PSC), soT = tr*(o)
is well-defined. Theng is parabolic ifr = 4, elliptic if 7 € [0, 4], hyperbolic if
T € |4, +0o0], and loxodromic ifr € C ~\ [0, +o0].
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(9) Leto, v be non-identity elements in AWE). If Fix(c) = Fix(v), thenov = vo.
Conversely, ifov = vo, then FiXo) = Fix(v) unlesso andv are involutions,
each interchanging the two fixed points of the other (such as the commuting pair
o(z) = —zandv(z) = 1).

(10) Corollary: Two non-identity elements of A@) or Aut(D) commute if and only if
they have the same fixed point set.

Lecture 3.

(1) Review of covering space theory:

e Let X be a connected finite dimensional manifold. There exists a covering
spacer : X — X, with X simply-connected, called theniversal coveringf
X. Itis unique up to isomorphism of coverings.

e Thedeck groupof = : X — X, denoted byl'x, consists of all homeomor-
phismsy : X — X which satisfyry = =. Algebraically,I"x is isomorphic
to the fundamental group, (X'). Once a base point € X is chosen, an iso-
morphism betweenl'x andm (X, z) can be defined by sendinge I'y to the
homotopy class of the projection of any path joining saime 7! (z) toy(z).

e I'y actssimply transitivelyon the fibers ofr: If ,§ € X with 7(z) = w(y),
there exists a unique € I'x such thaty(z) = g. In particular, ify € 'y has
a fixed point, theny = id.

e ['x actsevenlyon X: Every pointinX has a neighborhoad such thaty(U)N
U = (forally € Tx \ {id}. In particular,I'x is a discrete subgroup of the
homeomorphism group oX. The quotientX /T"x is a Hausdorff manifold
homeomorphic toX.

There is a one-to-one correspondence between subgroups afid coverings of
X as follows.

e Given a subgroug? C I'yx, the quotienty” = )~(/H is a covering ofi(, with
the covering map : Y — X defined by sending th&-orbit of 2 € X to the
I" x-orbit of Z. For this coverings; (Y) = H and the projectiolX’ — Y is the

universal covering. The deck grouppf Y — X is isomorphic taN(H)/H,
where

N(H)={yeTlx :vHy ' C H}

is the normalizer off inI'y.



° Con\~/ersely, given any covering : Y — X, there exists a covering map
q : X — Y such thatpg = m. Moreover, there exists a subgroép C I'x
isomorphic tor; (YY) such thatX /H is homeomorphic td”.

(2) If X is a Riemann surface, the topological universal coveﬁgg}? — X can be
equipped with the pull-back complex structure so as to mgiketo a Riemann
surface;r into a holomorphic map, andy into a subgroup of AytX).

(3) Corollary: Every Riemann surfacé can be represented éNCS/F,NWhere)N( is con-
formally isomorphic toC, C or D, and[ is a subgroup of AutX) isomorphic to
m1(X) which acts evenly orX .

(4) A Riemann surfacél is calledspherical Euclidean or hyperbolicaccording as its
universal coveringX is conformally isomorphic t&, C or D.

e X =~ C. Since every automorphlsm & has a fixed point, the only subgroup
of Aut((C) which acts evenly oft is the trivial group. It follows thatX’ = C.

e X =~ C. The only fixed point free automorphisms @Gfare translations. It
easily follows that the only subgroups of At which act evenly are the
trivial group, or the group generated by a single translatien = + b, or the
group generated by two translations- z + b; andz — z + by, with Z—; ¢ R.

It follows that X = C, or X = C*, or X = a complex torus.

e X = D. All other Riemann surfaces are therefore in this category. In partic-
ular, a Riemann surface with non-abelian fundamental group must be hyper-
bolic.

(5) Examples: The punctured dik and the annul (1, R) = {z : 1 < |z2| < R} are
hyperbolic. In fact, these are the only hyperbolic Riemann surfaces with non-trivial
abelian fundamental group. The trice punctured spﬁfem{a, b, c} is hyperbolic
since its fundamental group is non-abelian. If we assymé,c} = {0,1, 00}

(a normalization which can always be achieved by applying an automorphism of

@), an explicit universal covering map is given by tbliptic modular function
H— C~{0,1}.

(6) Let f : X — Y be a holomorphic map between Riemann surfaces i§ non-
hyperbolic and” is hyperbolic, thery is constant.

(7) Corollary (Picard): An entire function which omits two distinct values is constant.

(8) Corollary: A domainX C Cis hyperbolic iffC \. X has at least three points.

Lecture 4.



(1) Letp € D, v € T,D and choose < Aut(D) so thaty(p) = 0. Define
vl = 2]@.v]

This is independent of the choice pfsince by Schwarz Lemma evetye Aut(D)
with ¢(p) = 0 coincides withy up to a rotation. Explicitly, take(z) = . SO
that

A%
/
eV = (p)v = :
A TR
Then
vl = —— v
V|| = —— = |V|.
1 —|pf?
We write this metric as
2
= ———ldz|.
D 1—|Z’2| Z|

and call it thehyperbolicor Poincate metricof the disk.
Pulling pp back by the conformal isomorphisfn: H — D defined by

11—z
we obtain the following formula for the hyperbolic metriclf
1
= dz|.
The Gaussian curvature pf; atz = x + iy € H can be computed as
Alog pu (2 0? 0? ~1
P (2) ox dy Y

Since the curvature is a conformal invariant, the same holdg;for

(2) Corollary: There exists a smooth Riemannian metric on the unit disk which is
invariant under the action of A(D). It is unique up to multiplication by a positive
constant, which can be chosen so as to normalize the Gaussian curvature of this
metric to—1.

(3) Here are some properties @f. We use the notationdisty(-, -) and By(p, r) for
the hyperbolic distance and the hyperbolic ball centeredadtradiusr > 0. The
same notations without the subscripwill denote the Euclidean data.

e pp is aconformalmetric, i.e., at every point it is a positive multiple of the
Euclidean metric.

e op(z) — +ooas|z| — 1. Infact, pp(z) is asymptotic todisté—m) asz — JD.



e Any two pointsp, ¢ € D can be joined by a unique minimal geodesic. This ge-
odesic is part of the Euclidean circle passing thropghwhich is orthogonal
to OD.

o We have
distp(0, z) = log (

It follows that

1+ |7
1 — 2]

) forall z € D.

Bp(0,7) =B (O,tanh <g>>

By applying elements of AgD), we conclude that every hyperbolic ball is a
Euclidean ball, perhaps with a different center.

e Closed balls iD, distp) are compact. Hend@, distp) is a complete metric
space.

(4) Let X be a hyperbolic Riemann surface and D — X be its universal covering.
The hyperbolic metrigy is invariant under the action of the deck grolip C
Aut(D), so it descends to a well-defined Riemannian meisicon X. In local
coordinatesy = 7(z), the metricox = px(w) |dw| satisfies

_ m(2) 2
px(m(2)) = IT'(2)| (1= |2]2) |7 (2)]

Clearly, this metric onX makesr into a local isometry.
(5) Some properties gfy:
e py is a conformal metric of constant curvaturé.

e Closed balls i X, dist x ) are compact. HendgX, dist x ) is a complete metric
space.

e Geodesics inX are ther-images of geodesics in.

e Any pairp,q € X can be joined by at least one minimal geodesic, obtained as
follows: Choose € 7~ !(p) andg € 7~ !(¢) so that

distp(p, §) = distp (7~ (p), 7} (q))-
Then, ther-image of the geodesic joiningto ¢ is a minimal geodesic joining
p 1o q. In particular,

distx (p, q) = distn(7 " (p), 77" (q))-

(6) Example: Using the universal covering map H — D* given byn(z) = 2™,
we find that the hyperbolic metric di* has the form

-1
pps = ———— |dz|.
2| log ||
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A neighborhood of the cusp ib* can be embedded isometrically R as the
pseudo-sphere.e., the surface obtained by revolving tingctrix about its axis.

Lecture 5.
(1) Letf : X — Y be a holomorphic map between hyperbolic Riemann surfaces. We
define
: py(f(2) |
z = Z)|.
1 (2)]] ox () 1f'(2)]

To emphasize the metrics used in the domain and range, we sometimes use the
more descriptive notatiofif'(z)||,x.»y» O |[f'(2)|,x whenX = Y. Note that

unlike | f'(z)| which depends on the choice of the coordinates, the ngfifr)|| is

a well-defined function otX. Clearly, f is a local isometry iff| f'(z)|| = 1 for all

z € X. Note also that

(g o £ @I =g (FEII- 117 )]
(2) Example: Letp : D — D be holomorphic. Thetfj¢/(2)|| = 1 for all z € D iff
© € Aut(D).

(3) If f: D — Dis holomorphic, ther f'(z)|| < 1 for all z € D. If equality holds at
somez, then it holds everywhere anle Aut(D).

(4) Corollary: If f : D — D is holomorphic, then

1 — 2
If'(2)] < %ﬁ:@ forall z € D
(5) Invariant form of Schwarz Lemma: Lgt: X — Y be a holomorphic map between
hyperbolic Riemann surfaces. Thigfi(z)|| < 1for all z € X. Moreover, exactly
one of the following must be the case:

e The equality|| f’(z)|| = 1 holds for allz, f is a local isometry and a covering
map.

e The strict inequality|| f'(z)|| < 1 holds for allz, f is a contraction and not
a covering map. In this case, for every compact/set. X there exists a
constant) < ¢ = ¢(K) < 1 such that

disty (f(2), f(w)) < ¢ distx(z, w) forall z,w € K

(6) Example:f : D — D defined byf(z) = =" is not a covering map, so it must satisfy
If'(z)|| < 1forall z € D. In fact,

nlz" 11— |2*)

1— |z

< 1.

1)1 =



Note however tha f’(z)|| — 1 as|z| — 1. On the other hand, the sanfieviewed
as a maf* — D* is a covering, hence a local isometry. This time

n|z[""z|log |z|
f/ ya = =
17O = = e T
(7) Corollary: If X C Y are hyperbolic Riemann surfaces, the inclusionX — Y

satisfies|/(z)|| = g;g < 1forall z € X. In particular,

disty (z, w) < distx(z, w) forall z,w € X.

Note that||./(z)|| — 0 asz — 90X NY.

Lecture 6.

(1) Let X andY be Riemann surfaces. Denote byXC Y") the space of all continuous
maps fromX to Y. This space is endowed with tltempact-open topology. A
basis forJ is given by the collection

Uko = {f € C(X,Y) : f(K) C O},

where K runs through the compact subsetsXfand O runs through the open
subsets of".

(2) The space CX,Y) is in fact metrizable. A metric which induces the topoldQy
can be constructed as follows. LK} be anexhaustiorof X by a sequence of
compact subsets, that is

X=|JK; and K;cCint(K;,) forj=123,...
j=1

Choose any metridy on Y compatible with its topology. Fof,g € C(X,Y)
define

ZEKJ'

d;(f.g) = min {1, sup dy<f<z>,g<z>>} i=1,23,...

and

d(f,9) =Y 27 d;(f.9).
j=1
It is easy to check thad is in fact a metric on CX,Y"), and that it is compatible
with 7. Furthermored(f,, f) — 0iff f, — f uniformly on every compact subset
of X. For this reasonJ is also calledhe topology of local uniform convergence
In what follows, by the convergence of a sequence we always mean convergence in
this topology, unless otherwise stated.
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(3) A sequencef,, € C(X,Y) tends to infinity inY” if for every pair of compact sets
K Cc X andK’ C Y we havef, (K) N K’ = () for all largen.
The definition is interesting only wher is non-compact. Note also that tending
to infinity depends strongly on the target surfaCeFor examplef,(z) = z + n
tends to infinity as a sequence of maps— C, but does not tend to infinity as a
sequence of mags — C.
(4) Afamily § C C(X,Y) is normalif every sequence iff has either a convergent
subsequence or a subsequence which tends to infinity in
Clearly, the second possibility never occursYifis compact. Also note that
normality is a local property, i.eJ is normal iff everyp € X has a neighborhood
U such that¥|;; is normal.

(5) The problem of deciding whether a given family is normal can be quite diffi-
cult. Fortunately, for families of holomorphic maps this problem has a surprisingly
neat answer, provided by Montel, which is based on the following lemma. Let
Hol(X,Y") denote the closed subspace afXCY") consisting of all holomorphic
mapsX — Y.

Lemma: LetX andY be hyperbolic Riemann surfaces, aRdc X andK’ C Y
be compact. Then
AK,K’ = {f € HOl(AXV7 Y) . f(K) C K/}

is a compact subset of Hot, V).

Lecture 7.

(1) Montel's Theorem: IfY is a hyperbolic Riemann surface, then H9lY') is a
normal family.

(2) LetY c C be a hyperbolic domain ang} € Hol(X,Y") tend to infinity inY". Then
there is aw, € 9Y and a subsequeng¢,,, } which converges tay, in Hol(X, C).

(3) Classical form of Montel's Theorem: Take three distinct points ¢ € C and let
Fape C Hol(X, C) consist of allf which satisfyf(X) c C\ {a,b,c}. ThenF, ..
is normal.

(4) Let X be a Riemann surface arfd: X — X be a holomorphic map. ThHeatou

set F'(f) consists of all points inX with a neighborhood/ such that the family
{f"v : U — X},>1is normal. Thelulia setJ(f) is the complemen¥ ~ F(f).

(5) Examples: Consider the case= C. ThenJ(f) = dDif f(z) = z", andJ(f) = 0
or a point if f is an automorphism.

(6) Some basic properties:
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e J(f) is closed andF'(f) is open. Either set can be empty. Every connected
component ofF'(f) is called aFatou componentf f.
e J(f), henceF(f), istotally invariant that is

z e J(f) < f(z) € J(f).

As aresult,/( f) enjoys a great deal sklf-similarity If z € J(f) is not a crit-
ical point of f, then there exist neighborhootfsof = andV of f(z) such that
f U — Vis aconformal isomorphism mappiggn .J( /) homeomorphically
toV NJ(f).

e Foranyk > 1, J(f) = J(f°%), henceF'(f) = F(f°").

Recall that thanultiplier of a p-cycle zy — 2z — --- — z, = 2 is the quantity

A = (f°P)'(z) € C which is well-defined on a Riemann surface. The cycle is
attractingif |A\| < 1, super-attractingf A = 0, repellingif |A\| > 1 andindifferent

(or neutra) if |A\| = 1. An indifferent cycle igationally indifferentif \ is a root of
unity, andirrationally indifferentotherwise. A rationally indifferent cycle is called
parabolicif no iterate of f is the identity map (thuso is a parabolic fixed point for
f(z) = z+ 1butnotforf(z) = —=2).

e Every repelling cycle is contained if(f).

e Every attracting cycle is contained i(f). More precisely, suppose —
7 — -+ =z, = z IS attracting and consider itsasin of attractionl/
consisting of alk € X such thatf°"?(z) — z, for somej asn — oco. ThenU
is open and/ C F(f).

e Every parabolic cycle is contained if{ ).

Lecture 8.

We now turn to the case of the Riemann sphere. Througlfouf: — C will denote a
rational map of degree at least

(1) The Julia se/(f) is non-empty.

(2) If U c Cis open and/ N J(f) # 0, then the union J, ., f°"(U) misses at most
two points. -

(3) The Julia se¥/( f) is nowhere dense, or elsg f) = C.
(4) Thegrand orbitof a pointp € C is the set
GO(p) = {z € C: fo*(z) = f"(p) for somen, m > 0}.

The pointp is calledexceptionaif GO(p) is a finite set. The set of all exceptional
points of f is denoted byF( f).
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As an examplepo € E(f) wheneverf is a polynomial, ande(f) = {0, 00}
wheneverf(z) = 2", n € Z~{-1,0, 1}. The next result shows that these examples
are quite general.

(5) The exceptional sef(f) has at most two points, which are super-attracting. If
E(f) # 0, then f is conformally conjugate either to a polynomial or to the map

z 2",

(6) If z € J(f) andU is a small neighborhood aof, thenlJ,,., f°*(U) = C~ E(f)
(in particular, the union does not depend:oor U). -

(7) Corollary: Ifz € J(f), the set of iterated preimagesois dense in/(f).
(8) Corollary: The Julia sef(f) is perfect (i.e., it is compact with no isolated point).
(9) For a generic choice afe J(f), the forward orbit of: is dense in/(f).

(10) EitherJ(f) is connected or it has uncountably many connected components.

Lecture 9.

(1) Let X be a hyperbolic Riemann surface afid X — X be holomorphic. Then
J(f) = 0. In particular,f has no repelling or parabolic cycles.

(2) Theorem: LetX be a hyperbolic Riemann surface afd X — X be a holomor-
phic map. Then exactly one of the following must be the case:

(A) Attracting. f has a unique fixed point and the sequencgf°”} converges
locally uniformly to the constant mafg — {q}.

(E) EscapeThe sequencéf°"} tends to infinity inX.
(F) Finite order. There exists & > 1 such thatf°* = idy.

(D Irrational rotation. X is conformally isomorphic tdD, D* or an annulus
A(1, R), andf acts as an irrational rotation on it.

Here is the structure of the proof:

e Suppose there exists a single orbit fofvhich tends to infinity inX. Then,
using Schwarz Lemma, we show tHgt”" } must tend to infinity inX'. This is
the case (E).

e Otherwise, all orbits off are recurrent, that is, for evegy € X there is a
compact sef C X and an increasing sequence of positive integersuch
that f°" (p) € K. We distinguish two cases:

ee ||f/(2)]| < 1forall z € X. Then, using Schwarz Lemma, we show tfiat
has an attracting fixed poigt and all orbits converge locally uniformly
to ¢. This is the case (A).
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ee || f'(2)]| = 1forall z € X so thatf is a covering map. We distinguish
two further cases:

e e ¢ 7, (X) is abelian. ThenX is isomorphic tdD, D* or someA(1, R)
and f is a rotation onX. Depending on whether this rotation is
rational or irrational, this is the case (F) or (I).

e e e 71(X) is non-abelian. Then by lifting to the universal covering,
using Montel, and observing that the normalizer of the deck group
of X must be discrete, we show that two distinct iterateg afust
coincide. This is the case (F).

Lecture 10.

(1) Corollary: A holomorphic self-map of a hyperbolic Riemann surface with two or
more periodic points must be a finite order automorphism.

(2) Fatou-Sullivan’s classification of periodic Fatou components:lLet f(U) be a
fixed Fatou component gf € Rat;, d > 2. ThenU is

¢ the “immediate basin” of an attracting fixed pointlin or

e an “attracting petal” for a parabolic fixed point @/ with multiplier A = 1,
or

e a “Siegel disk,” or
e a“Herman ring.”

The fact that the last two cases can actually occur follows from the work of
Siegel, Arnold and Herman. In the case of an attracting petal, the proof of the
above theorem relies on the following result:

(3) Snail Lemma: Lef be a holomorphic map defined in a neighborhdoaf the fixed
point0 = f(0). Lety : [0,4+o00[— V ~ {0} be a path such théitm,; ... v(t) =0
andf(~(t)) =~(t+ 1) forallt > 0. Then|f'(0)| < 1 orelsef’(0) = 1.

(4) The immediate basin of an attracting cycle of a rational map of degreeontains
a critical point.

(5) Corollary: Letf € Rat;, d > 2. Thenf has at mos2d — 2 attracting cycles.

In fact, suchf has at mos2d — 2 non-repelling cycles. This was conjectured by
Fatou and proved by Shishikura.

Lecture 11.

(1) Amapf : X — Y between topological surfacespsoperif the preimage of every
compact set is compact. Equivalently{if(z,)} tends to infinity inY” whenever
{x,} tends to infinity inX.
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A proper holomorphic mag : X — Y between Riemann surfaces has a well-
defined finite mapping degree, that is, there exists an intéget such that

Z deg(f,x)=d forally €Y.

z€f~1(y)
The integer is often denoted byleg( f).

(2) Amapf : X — Y between topological surfaces idoeanched coveringf every

y € Y has a small disk neighborhodd such that the preimage o¢¥, y) is the
disjoint union of pointed disk$U;, z;), with f : (U;,z;) — (V,y) acting as a
power. This means there are homeomorphigms (U;, z;) — (D,0) and :
(V,y) — (D, 0) such that) o f o ¢~1(2) = 2* for some integet > 1. The integer
k is called thelocal degreeof f at x; and is denoted byeg(f, z;). It is easy to
check that a branched covering has a well-defined mapping degree which may be
finite or infinite.

A non-constant holomorphic map between Riemann surfaces is proper if and
only if it is a finite degree branched covering.

(3) Corollary: A proper holomorphic map between Riemann surfaces with no critical
points is a covering map.

(4) Riemann-Hurwitz Formula: Let : X — Y be a non-constant proper holomorphic
map between Riemann surfaces. Then

deg(f) - x(Y) = x(X) = [deg(f,z) —1].
reX
Note that the right term is a finite sum. It is the number of critical pointg of
counting multiplicities.

In what follows we consider examples of smooth Julia sets:
(5) Acircle: If f(z) = z*¢ whered > 2, thenJ(f) = S' = JD.

(6) An interval: If f is the quadratic Chebyshev polynomial- 2* — 2, thenJ(f) =
[—2,2]. This can be verified directly using the fact that!([—2,2]) = [-2,2].
Alternatively, observe that the degrgeational functionj(w) = w + w™! (known
as theJoukowski mapsemi-conjugateg to the squaring map(w) = w?:

jos=[oj
In otrler words,f is aquotientoAf s. Sincej maps botiD andC < D conformally
ontoC \ [—2, 2], it follows thatC \ [—2, 2] is the basin of infinity off and.J(f) =
[—2,2].
The existence of the semi-conjugatyas interesting consequences. As an ex-

ample, the normalized Lebesgue measglrnw onS! is an invariant ergodic mea-
sure for the action of, so the push-forwarg = j*(%de) IS an invariant ergodic



measure for the action gf on its Julia sef—2, 2. Sincez = j(e) = 2cos(6), if
[a,b] C [-2,2], we have

i a,b) = [arccos(g), arccos(%)] Ul[— arccos(g), — arccos(g)].

It follows that

1 a b 1 [° de
—9. . A w2 [ %
wla, b o (arccos(z) arccos(z)) - /a Nt
which gives
1 dz
g VA — 22

Now, ergodicity ofu implies that for any measurable g6tC [—2, 2], the relation

1
lim —#{0<k<n—1:f")eE}=uE)
n—+o0o N,
holds forpu-a.e. (hence Lebesgue a.e.c [—2,2]. Sinceyu is more concentrated
near the end points-2 than the middle of the intervdl-2, 2], it follows that a
typical orbit in the Julia set of visits the ends of—2, 2] much more frequent than
its middle.

(7) Euclidean circles and intervals are the only exampldsdmensional smooth Julia
sets. According to D. H. Hamilton, if the Julia set of a rational map is a Jordan curve
(resp. arc), then either it is a Euclidean circle (resp. circular arc) or it has Hausdorff
dimension> 1.

Lecture 12.
Following Lates, we now construct rational map®f degree> 2 with J(f) = C.

(1) Take the lattice\ = Z & 7Z C C generated by and somer € H, and consider
the torusT, = C/A. Leto be the involutionz — —z onT,. Then the quotient
X =T, /o is a compact orientable topological surface and the canonical projection
7 : T, — X is a degree€ branched covering with branch points()at%, 5 ”TT
corresponding to the fixed points of It is easy to see thaX inherits a Riemann
surface structure with respect to whighis holomorphic. By Riemann-Hurwitz

Formula,
2x(X) = x(T;) =4 = x(X) =2,

S0 X is biholomorphic to the Riemann sphéAEe An example of such a projection
7w : T, — Cis provided by the classicaleierstrasso-function This is the unique
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meromorphic function o€ with poles onA which satisfies

p(z+1) =p(z+7) = p(2)
p(—2) = p(2)
p(2) =2"2+0(1) nearz =0.
Explicitly,

1 1 1
p(z) =5+ l—g——zl
& weA~{0} <Z T w) “
Now consider the endomorphisgn: T, — T, defined byg(z) = nz for an

integern > 2. Theng is a holomorphic covering map of degreé which is
uniformly expands the Euclidean metric @n. Since all points of the form

r S
n? —1 + n? —1

are fixed undey°?, it follows that the periodic orbits of are dense iff,.. Since all
these orbits are repelling, we havég) = T,. As g commutes with the involution
o, it descends to a well-defined holomorphic map C — C of the same degree

n?. Moreover,J(f) = C sincer maps the repelling cycles gfto repelling cycles
of f. We call f constructed this way hattes map

T (r,s € Z)

(2) Thus, for an arbitrary lattice we can construct Batmaps of degree 4. For
special lattices, we can obtain Lestmaps of lower degrees. For example, take
to be the lattice of Gaussian integétsp iZ, and defingy : T; — T; by g(z) =
(1 +4)z. Theng is a holomorphic expanding map of degféet i[> = 2, and a
brief inspection shows that(g) = T;. It follows that the induced map : C—C
is rational of degree with .J(f) = C.

To find an explicit formula forf, normalize the projection so thatr(0) = oo,
7(3) = 1 andw (1) = 0. To figure out whatr(%) is, note that: — iz is an
automorphism off; which fixes0 and *}* and interchange’ and%. It descends

to an involution ofC which fixes0 and co and interchange$ and m(%). This

involution is necessarily — —w, som(%) = —1. Thus
. . 1 & 142
critical pointsofr: 0 = ! Rl
2 2 2
Lol
critical valueofr: oo 1 -1 0
Underg, the critical points ofr map as



so underf, the critical values ofr map as
+1+— 0+ 0o — 0.

It easily follows that the quadratic rational mgpmust have the forny(w) =
AMw —w™1). To determine\, user o g = f o m and the fact that(z) ~ 22 near
z = 0 to obtain
1
(1+i)322 22

Thus\ = & andf(w) = 5 (w —w™"). Note in particular that the critical values of

7 are precisely theostcriticalpoints of f (a fact that could have also been checked
usingr o g = f o).

nearz = 0.

(3) The endomorphism(z) = (14 1)z of the torusT; has an obvious invariant ergodic
measure, namely the Lebesgue area foimi®. It follows that the push-forward
1 = m.(]dz|?) is an invariant ergodic measure for the Bastmapf(w) = o (w —
w~!). To find the explicit formula for this measure, note that the elliptic function

w = m(z) satisfies the differential equation

dw\ 2 3
E = 4w” — gow — g3,

where the constantg, g; are determined by the fact that+1 are the finite critical
values ofw. Thus

SO

d 2
|dzf? = ] .
4|lw||w = 1] |w + 1|
Since the map has degre@, it follows that
|dw]|”

2wl |w—1]|lw+ 1|

lL[/:

Note thaty is a smooth measure except at the four critical values which are

the postcritical points of. Ergodicity of » shows that a typical orbit of visits
neighborhoods of these four points much more frequently than neighborhoods of
the same spherical size of other points on the sphere. Thus, such a typical orbit
appears to be highly concentrated near the four postcritical points.

Lecture 13.

(1) Rational maps of degree two or more exhibit both expanding and contracting be-
haviors. Letf € Rat; with d > 2. Thenf°" has2d™ — 2 critical points near which
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the spherical metrie = 2|dz|/(1 + |z|?) is highly contracted. On the other hand,
if |f'(2)]l = o(f(2))|f(2)|/o(2) is the spherical norm of the derivative, we have

/@(f‘m)*a2 = /@ (oY N2 0? = d”/@aQ = 4rd",

which shows on averagdg /°")’||, grows exponentially fast.

(2) Givenf € Rat; with d > 2, let C'(f) denote the set of critical points ¢gf Define
thepostcritical setP(f) as

P(f)= | {f(0). f2(), f3(c),.. .}.

ceC(f)
Here are some basic properties:

P(f) is non-empty and compact.

F(P(f)) € P(f).

P(f) = P(f°*) for everyk > 1.

P(f) is the smallest compact subset®fvhich contains all the critical values
of fo*foralln > 1.

The last property shows that on every topological disk disjoint fidfyi), all the
d™ inverse branches gf°" are single-valued holomorphic functions.

(3) Supposef € Rat; with d > 2, and#P(f) < 2. Thenf is conjugate to the map
z+— z40rz — 27 (in particular# P(f) = 2).

(4) Let f € Rat; with d > 2, and#P(f) > 3. Letp denote the hyperbolic metric on

~

(each component of) the compleméht. P(f). If both z andf(z) are in@\P(f),
then|| f'(z)]l, > 1.

(5) Letf € Rat; with d > 2, and#P(f) > 3. Definep as above, and assume that the
forward orbit ofz € J(f) never hitsP(f). Then||(f°")'(2)||, — oo asn — oc.

(6) Corollary: Letf € Rat; with d > 2. ThenP(f) contains the attracting, parabolic,
and Cremer cycles, as well as the boundaries of Siegel disks and Herman rings of

f.

Lecture 14.
Throughout we assumg < Rat; with d > 2.

(1) f is expanding(on its Julia set) if there exists a conformal metpic= p(z)|dz|
defined in a neighborhood of( ) and some\ > 1 such that

If' ), >A  forallz e J(f).
(2) Theorem: The following conditions are equivalent:
(i) fis expanding.
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(i) For any conformal metricp defined near the Julia set, there exist> 0 and
A > 1 such that|(f°")'(z)]|, > CA" foralln > 1 and allz € J(f).

(i) Some finite iteratef°* expands the spherical metricon the Julia set, i.e.,
there exists\ > 1 such that|(f°*)'(z)||, > A forall z € J(f).

(iv) There are no critical points gfin J(f) and all orbits inF'( f) tend to attracting
cycles.

(v) The orbit of every critical point of tends to an attracting cycle.

(vi) P(f)nJ(f)=0.
(3) Corollary: An expanding map has no indifferent cycles or Herman rings.

(4) Corollary: A guadratic polynomial with an attracting cycle in the plane is expand-
ing.

(5) A central conjecture in holomorphic dynamics is that expanding rational (resp.
polynomial) maps of degreé > 2 are dense in Raf(resp. PaqJ). This would fol-
low from the conjecture that structurally stable rational maps are expanding, since
the former class is known to be dense by the work ofist&ad-Sullivan.

Lecture 15.
(1) Classical form of Kebe Distortion Theorem: Let : D — C be univalent, with
f'(0) =1. Then
1—r 1+7r .
<|f < — flz] < 1.
T SVeIs gy fllsr<

It follows that if f : D(p,e) — C is univalent and- < 1, then thedistortion of f
on the smaller disB(p, r¢) defined by

([ )

is bounded by a constatt(r) > 0 independent of. Thus, f distorts arc-lengths
and areas ifd(p, r¢) by a factor which only depends on

(2) Invariant form of Kdebe Distortion Theorem: Léf C C be a simply-connected
domain, K C U be compact, and be the hyperbolic diameter df in U. Then,
for every univalent functiorf : U — C,

"(z
sup { ||}C/((w))‘| Dz,w € K} < etd,
(3) Lebesgue Density Theorem: LEtC C be measurable. Then
area(D(p,r) N E)

r—0 area(D(p,r))

In particular, ifarea(E) > 0, then almost every € E is adensity pointi.e., it
satisfiedim, o area(D(p,r) N E)/ area(D(p,r)) = 1.

— xu(p) foralmost every € C.
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(4) In the definition of density points, we can replace round disks by other kinds of
neighborhoods. For example, a topological disks calleda-roundif

area(D) > adiam(D)?.

If pis a density point o® and{ D, } is a sequence af-round neighborhoods ¢f
with 7, = diam(Dy,) — 0, then

area(Dy N E) area(Dy, \ E)
area(Dy)  area(Dy)
. area(D(p, 1)) ‘ area(D(p, ) N E)
- area(Dy) area(D(p, 1))
_— i _ area(D(p, i) \ F)
= ar? area(D(p, r))
T area(D(p, 1) \ E)

a  area(D(p,ry))
Sincearca(D(p, ri) \ E)/ area(D(p, ;) — 0 ask — oo, it follows that

area(Dy N E)

= 1.
k—oo  area(Dy)

(5) A rational mapf is said to besrgodic(with respect to the Lebesgue measure class
on the sphere) if for every measurable Bett C which satisfiesZ = f~1(E) itis
true thatarea(E) = 0 or area(C \ E) = 0.

It is not hard to show thaf(f) = C wheneverf is ergodic.
(6) “Ergodic or Attracting” Theorem: Suppogec Rat; with d > 2. Then
e fisergodic and hencé(f) = C, or
o lim, . dist,(f°"(z), P(f)) = 0 for almost every: € J(f).
The two possibilities areot mutually echuAsive: According to M. Rees, there are
ergodic rational maps witl’(f) = J(f) = C.
(7) Corollary: If f is expanding, thearea(J(f)) = 0.
A more careful analysis of the proof shows that in féicty (J(f)) < 2.

Lecture 16.

(1) Let X be a smooth orientable surface.cAnformal structureon X is an equiva-
lence class of smooth Riemannian metrics, where the metri¢sare considered
equivalent if¢’ = n g for some positive function : X — R. The equivalence class
(also called theonformal clasyof g is denoted byg].



It follows from the definition that each conformal structure gives rise to a well-
defined notion of “angle” between tangent vectors.

(2) Now assume in addition th& has a complex structure. Then carries a canon-
ical conformal structure whose representative metrics have the localgiarm=
v(2) |dz| in each holomorphic local coordinateon X. This is well-defined since
if ¢ is another local coordinate near the same point@né z(() is the change of
coordinates, then

9(¢) = (z() 1 () dc]|
which is a multiple of d¢|. We call this conformal structure tis¢andard conformal
structure ofX (with respect to the given complex structure) and denote it by

(3) On a Riemann surface, it is often easier to do local computations in complex-
variable notations. Lek be a Riemann surface and= x + iy be a holomorphic
local coordinate onX. Then(z,y) can be thought of as coordinates for the under-
lying smooth surface. In these coordinates, a Riemannian mgetras the local
form

Eda? 4+ 2F dz dy + G dy?,
whereE, F, G are smooth functions dfr, y) satisfyingEl > 0, G > 0 and EG —
F? > 0. The associated inner product on each tangent space is given by

0 0 0 0
—+b—,c—+d—)=F F(ad+b bd
<aax+ ay,caer 5y> ac + F(ad + bc) + G

=[a L H
where
E F
i
is the matrix ofg in the basig{ 5, -} In particular,
2
o + | + 2Fab + Gb*.
ox oy
Define two local sections of the complexified cotangent bufidlE @ C by
dz =dx +1dy
dz =dx — 1 dy

which form a basis for each complexified cotangent space. The local sections

o _1fo _,0
0z 2\ 0z oy

o _1(o .9
oz 2\azr oy
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of the complexified tangent bundfeX & C will form the dual basis at each point.
The inner producy extends uniquely to a Hermitian product 86X @ C. The
matrix of this Hermitian product in the bas{s?, 2} is given by’ = D* L D,
where

It follows that
D—l EF+G E—G—2%F
o E—-G+2iF EF+G

Let us introduce the quantities

1
1 E—-G+2iF
=—(FE-G+2F)= .
: 4¢< ) E+ G+ VEG - F?
Note that
E+G—-2VEG — F2
>0 and |u*= i
E+G+2VvEG — F2
Substituting these intd’ gives
L+|p?
2
L/ — 72
1+ [uf?
2

Since the Hermitian product dfi* X ® C is given by

0 0 9, 0 ;@
<Oé£+ﬁ£’w8 +V$>_[Oé Bl L [_],

2
L+ |pul? o
= (FE a1+ s+ uaﬁ) .
But real tangent vectors have the special fomg’— + a smcea — + by, 8
(a+ib) 2 5 +(a— zb)gz. For such vectors, the above formula reduces to

9 .59
“o, T

The last expression suggests that as long as we care about lengths of real tangent
vectors, the Hermitian metrigin the complex basi$.2, 2} can be represented as

9 =7(2)|dz + p(z) dz|,

2
= v’|a + pal’.




22

with v andu defined as above.

(4) Let us see how the quantitiesandy associated with a metrigtransform under a
holomorphic change of coordinates— w on X:

1(2) [dz + p(z) dz| = w*(y(w) |dw + p(w) dw])
= (w(2)) |w'(2) dz + p(w(z))w

=
N

S~—
Q

R

= 7(w(2)) [w'(2)] |dz + p(w(z))

from which we obtain

or simply

V(2) dz| = ~v(w) |dw)
D E ) 0T
a )

dz
It follows that~(z) |dz| is a well-defined(1, 1)-differential, namely a conformal
metric, onX. Similarly, 1(z) £ is a well-defined —1, 1)-differential onX. We
call u = pu(z) j—j the Beltrami differentialassociated witly. Note thatu depends
only on the conformal clagg]. Note also that — |u(z)| is a well-defined function
on.X.

(5) Corollary: There is a one-to-one correspondence between conformal structures on a
Riemann surfac&” and Beltrami differentials = 1(z) %2 which satisfy|u(z)| < 1
in every local coordinate on X. The standard conformal structurg corresponds
to the zero Beltrami differential.

(6) Here is the geometric interpretation of a Beltrami differential associated with a
conformal structurég|: Fix a local coordinate = z + iy = (z,y) near a point
p € X. Consider the family of “circlesE(p) = {v € T,X : ||v|| = const.} which
depends only ofy]. If v = ag> + b, = (a+ib) 3. + (a — ib) &, then the “circles”
||v|| = const. correspond to the lo¢{a+1ib) + ju(a—ib)| = const. in the real(a, b)-
plane. Setting. = re?’ and¢ = (a + ib)e~'2, we obtain the locj¢ + 1| = const.
in the {-plane, which is the family of concentric ellipses with the minor axis along
the real direction and the major axis along the imaginary direction, and with the
ratio of the major to minor axis equal ﬂid;—: Transferring this family back to the
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(a, b)-plane, it follows thatE(p) is a family of concentric ellipses if, X with

1 . . .
S gL = angle of elevation of the minor axis

= ratio of the major to minor axis

Lecture 17.

All surfaces are to be smooth, oriented, connected and without boundary. All diffeomor-
phisms are assumed orientation-preserving.

(1) LetX andY be surfaces and : X — Y be a diffeomorphism. Given a conformal
structurec = [g] onY’, thepull-backy*o is defined asy*g|. It is easy to check
that the definition is independent of the representatioéo.

Now assumeX andY are Riemann surfaces. Expressocally asw = w(z),
wherez andw are local coordinates o andY’, and leto = [|dw + u(w) dw| .
Then

o = [|w, dz + wzdZ + p(w(z)) (W, dz + Wz dz)|]
= [[(wz + p(w(2)) wz) dz + (wz + p(w(z)) w;) dz]
_ { ds + wz‘f‘ﬂ(w(z))%dz } ’
w, + p(w(z)) ws
where we have used the fact that

W, = Wz and Wz = W,.

This shows in particular that : X — Y is a biholomorphism if and only ip*oy =
ox. It also suggests the following pull-back operation on Beltrami differentials:

. ( (w) dw) Cwstp(w)w; d2 - w, plwz) + = dz
7\ ) T w, + p(w(z))wy dz w, 1+ = p(w(2)) dz
Thus, at the level of Beltrami coefficients, the pull-back operator acts fiberwise as

() = A ( MJF_a ) where = = and o = —=.
l+ap W, W,
Note that|A\| = 1 and|a| < 1, where the latter holds sincg is orientation-
preserving and hence has positive Jacobiat’ — |w-|?. It follows that the pull-
back operator acts on Beltrami coefficients fiberwise by an automorphism of the
unit disk. Note that wherp is a biholomorphismq = 0 and the automorphism
reduces to the (linear) rotatign— .

(2) The Integrability Question: “Given a conformal structur®n a surfaceX, does
there exist a complex structure ahwith respect to whiclory = ¢?” If such com-
plex structure exists, we say that itdempatiblewith o and we callr integrable
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An equivalent question is whether there is a Riemann suifaaed a diffeomor-
phismy : X — Y such thatp*oy = 0. Any suchy is said torectify 0. To see the
equivalence, note that@ : X — Y rectifieso, it pulls back the complex structure
of Y to one onX which is compatible withy. Conversely, if there is a complex
structure onX compatible witho, then the map id X — X rectifieso.

Supposey : X — Y andy : X — Z both rectifyo. Then(y o ¢~ 1)*0, = oy,
which means) o ¢! : Y — Z is a biholomorphism. It follows that the map
which rectifies a given conformal structure is unique up to post-composition with a
biholomorphism.

(3) A local condition for integrability: Suppose = [|dz + u(z) dz|] is a conformal
structure on a Riemann surfage Then, by the above computation for pull-backs,
the conditionp*oy = o translates into

Wz

— = u(2),

Wy
which is called theBeltrami equation Any (diffeomorphic) solution of this equa-

tion is called gu-conformalmap. Note that whep = 0 it reduces to the classical
Cauchy-Riemann equatian; = 0.

(4) Theorem (Guass): Suppogds a smooth complex-valued function definedlin
which satisfiegu(z)| < 1 at everyz € D. Then there exists a-conformal diffeo-

morphismy : D — (D) C C.
Note that eitherp(D) = C or ¢(D) is biholomorphic toD by the Riemann

Mapping Theorem. Thus, in the above theorem we canfiednformal solutions
D—DorD— C.

(5) Corollary: LetX be a surface with a Riemannian metric Then around each
point of X we can findisothermal coordinategx,y) in which ¢ has the form

v(2,y) /dz? + dy?.
(6) Corollary: Every smooth conformal structure on a surface is integrable. In partic-

ular, every (oriented, connected, boundary-less) surface admits the structure of a
Riemann surface.

(7) Corollary (Differential-Geometric Uniformization Theorem): Every simply-connected
surface with a Riemannian metric is conformally diffeomorphi®td®? or S

Here “conformal” should be understood as “angle-preserving.”

(8) Problem: Lety be a smooth Riemannian metric @n Decide whethefD, g) is
conformally diffeomorphic td or R?.

The answer is available in certain cases. For example,= |dz + u(z) dz|
and ||u]| < 1, then(D,g) = D is always the case (this will be a corollary of
the Measurable Riemann Mapping Theorem). As another example, suppose
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rotationally symmetric so thdt:| depends only on = |z|. Then(D, g) = D or R?
according as
: /a 1+ |p| dr
lim —
am1-J1 1 —|pu| 7
is finite or infinite.

(9) Example: Lety = |dz + kdz| where0 < k < 1. Then(D,g) = D. In fact, the
affine mapw = z + kz sendingD to the ellipse

2, a? y?
E:{(x,y)ER '(1+/<:)2+(1—/<:)2 <1}

satisfies the Beltrami equatian. = kw,.. Post-composingy with a biholomor-

phism E — D given by the Riemann Mapping Theorem, we obtain a conformal
diffeomorphism fromD, g) to D.

(10) Example: Ifg = |dz + 2* dz|, then(D, g) = C. In fact,w = —% is a conformal

1—[z[?
diffeomorphism fromD, g) to C since

22

wy (=2 _
—= =%
W,
(1—[z?)?
Lecture 18.

(1) A conformal structure |dz + p(z) dz|| on a Riemann surface, or its associated
Beltrami differentialy(z) %, is said to havéounded dilatatiorif

| 1tlloe = sup |u(2)] < 1.
zeX

(2) An orientation-preserving diffeomorphisfn: X — Y between Riemann surfaces
is calledquasiconformalf f*oy has bounded dilatation. Locally, this means there
exists & < k < 1 such that

I

In this case, we say thgtis K-quasiconformal, wheré¢ < K = % < +o0.
Thus, al-quasiconformal diffeomorphism is holomorphic.

sup < k.

zeX

(3) In many applications, one is bound to consider conformal structures on Riemann
surfaces which are only measurable. The integrability question for such conformal
structures still makes sense, but maps which would rectify such structures can no
longer be smooth. Easy examples show that measurable conformal structures are
not generally integrable. However, with the extra assumption of having bounded di-
latation, they are integrable and the maps which rectify them are homeomorphisms
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which enjoy some degree of regularity. This leads to the idea of considering quasi-
conformal homeomorphisms between Riemann surfaces.

(4) LetU,V be open sets iff. An orientation-preserving homeomorphigmU — V/
is called K -quasiconformaif
(i) fis absolutely continuous on lines (ACL). This means that the restrictign of
to almost every horizontal and vertical segment/irs absolutely continuous.

(i) |fz] < k|f.| almost everywhere itV, wherek = £—.
The quantityuy = }c—* is called thecomplex dilatatiorof f.
(5) Here are some properties of quasiconformal homeomorphisms:

o If f: U — V is quasiconformal, thelfi is differentiable almost everywhere in
U, that is, for almost every € U,

flo+2) = f(p) + 2f(p) + Zf=(p) + £(2),
where?? — 0 asz — 0.
o If f =u+iv:U — Visquasiconformal, the Jacobian

Jf = UgVy — UyVy = |fz|2 - ‘f3|2
is locally integrable i/, and we have
/ Jp dx dy = area(f(F))
E

for every compact sef C U. In particular,f maps sets of area zero to sets of

area zero.
e The partial derivatives, and f> of a quasiconformal map : U — V are
locally square-integrable . In fact, if f if K-quasiconformal anél = ﬁ—ﬁ
then
2 1 2 ?
L7 < J and 2 < Jr.
sy s s

e The partial derivativeg, and f- of a quasiconformal map : U — V" are the
distributional derivatives also, that is,

/Ufzgf):—/Ustz and /Ufzw:_/(]f%

for every compactly supported smooth test function/' — C.

e The standard Chain-Rule formulas hold for the composition of quasiconformal
maps: Ifw = f(z) and{ = g(w) are quasiconformal, so &= (g o f)(z),
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and the relations
G = Cuww, + G W,
Gz = Qo wz + G Wz
hold almost everywhere. Dividing, we obtain

y fZwaE+<EwZ_wE+<Ngof>w_z_ g+ (pg o f) (%)

Cow: Gz wat (g0 /)W 1+ (g0 f) () 717
It follows that

A (X

If fis K-quasiconformal, soig—*.

w,

)) where s+ Sk € Aut(D)
1+ 7iys

Wy

If fis K;-quasiconformal and is K>-quasiconformal, the compositigno f
Is K1 Ks-quasiconformal.

Weyl's Lemma: Al-quasiconformal homeomorphism is holomorphic.

If f:U — V is K-quasiconformal, then
K~'mod(A) < mod(f(4)) < K mod(A)

for every annulusA C U. According to Ahlfors, this property is equivalent to
being K-quasiconformal.

(6) Example: LetK > 1 and definef : C — C by

. r+iKy ify>0
flz +iy) = o
x+iy ify<O0.
Then f is an ACL homeomorphism with
LK if >0 LE jfy >0
. 2 - . 2 -
Lz +iy) = _ ( +iy) = _
£ 2 { 1 ify<O = 2 {0 if y <O

SO that\%| < ﬁ—ﬁ It follows that f is K'-quasiconformal.

(7) Example: Let) < k < 1 and definef : C — C by
z+kz if|z] <1
e :{ A IS

Then f is an ACL homeomorphism with

1 if 2] <1 koif|z| <1
f(z) = { . fo(z) = {

- if|z[>1 0 iflz]>1
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SO that\}"—j < k. It follows that f is K-quasiconformal, with' = £,
(8) Example: Letf : [0,1] — [0,1] be continuous and non-decreasigg)) = 0,

£(1) = 1, and¢'(z) = 0 almost everywhere (such a function is often called a

devil’s staircasg Extend¢ to a mapR — R by settingé(z + n) = £(z) + n for

n € Z. Definef : C — C by

flx+iy) =2 +i(y +&()).

Then f is a homeomorphism which satisfigs= 0 almost everywhere i€. How-
ever, f is not holomorphic. This does not contradict Weyl's Lemma sifi¢g not
ACL, hence not quasiconformal.

(9) Example: The unit disk and the complex plan€ are not quasiconformally home-
omorphic: If there were a quasiconformal homeomorphism D — C, then
A= f({z: 3 < |2] < 1}) would be an annulus of finite modulus. Bdtcontains
the punctured diskz : |z| > r} for all larger, whose modulus is infinite.

Lecture 19.

(1) A homeomorphisnyf : X — Y between Riemann surfacesAsquasiconformal if
w o f o z"tis K-quasiconformal for each pair of local coordinatesn X andw
onY for which this composition makes sense.

(2) Much of the notions we discussed above for diffeomorphisms, and the local com-
putations, remain valid for quasiconformal maps, as they are differentiable almost
everywhere. Thus, we can talk about measurable Riemannian metrics and confor-
mal structures on surfaces, measurable Beltrami differentials on Riemann surfaces,
and the pull-back of a conformal structure or Beltrami differential under a qua-
siconformal homeomorphism. In particular,4f: X — Y is a quasiconformal
homeomorphism and = [ |dz + u(z) dz| | a conformal structure o, then

. Pz dz
@ rectifieso <= ¢*oy =0 <= p, = — — =p a.e.
v, dz

(3) Theorem (Local solutions of the Beltrami equation): Lé&le a measurable complex-
valued function on the unit diskR with ||u||» < 1. Then there exists a quasicon-
formal homeomorphisnp : D — D which satisfies‘;—j = 1 almost everywhere.

(4) The Measurable Riemann Mapping Theorem (MRMT): b a measurable Bel-
trami differential on a Riemann surfaééwhich has bounded dilatation. Then there
exists a Riemann surfadé and a quasiconformal homeomorphism X — Y
such thatu, = 1 almost everywhere. If) : X — Z is another such homeomor-
phism, the map) o ¢! : Y — Z is biholomorphic.
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(5) MRMT with parameters foC: Let 1 be a measurable Beltrami differential on
the Riemann sphen@ which has bounded dilatation. Then there exists a unique
quasiconformal homeomorphispt : C — C such thato#(0) = 0, (1) = 1,

@t (o0) = oo, andu,x = p almost everywhere. Moreover, jif depends contin-
uously, smoothly, or analytically on a parameter, so does the normalized solution

P
(6) A deformation retraction Q@) — Aut(@): Lety : C — C be a quasiconformal

~

homeomorphism andt € Aut(C) be uniquely determined by the conditién= ¢
on the sef0, 1, c0}. Definey, =t pu, fort € [0,1]. Letyp, = ® o pHt, wherept
is the normalized solution of the Beltrami equation given by MRMT. Then ¢,
is continuous and by uniqueness of the solutigns+= ¢ andyp, = .

(7) Let f and g be rational maps ang : C - Chbea quasiconformal conjugacy
between them so thato f = g o . The fact thay is holomorphic implies that the
Beltrami differential., is f-invariant, that isf*p., = u,. Conversely, suppose
is an f-invariant Beltrami differential with| .|| < 1. Then the branched covering
g = ¢"o fo(p)~!is a rational map since it is locally-quasiconformal away
from the branch points.

Thus, there is a correspondence betwégenvariant Beltrami differentials of
bounded dilatation and rational maps which are quasiconformally conjugdte to
(the correspondence need not be one-to-one).

(8) As a basic dynamical application of the preceding remark, let us show that the qua-
siconformal conjugacy class of a rational m@ajs always path-connected. Suppose
p Is a quasiconformal conjugacy betwegand another rational map Consider
the family i, = tu,, of Beltrami differentials as above and note that

e = f*<tﬂso) = tf*/w =ty = ft,
where we have used the fact that the pull-back operétarcts as a rotation about
the origin and hence is linear. §f; = ® o ¢** as before, it follows that the path
t— g = ;o fo(p;)! consists of rational maps quasiconformally conjugate to
f connectinggy = ® o f o ®~! to g; = g. Joining this path t@ — ®, o f o ®;*
in whicht — &, is a path in Au@) connecting id tob, we obtain the desired path
from f to g.

Lecture 20.
Here are 3 elementary applications of MRMT in holomorphic dynamics.

(1) Invariance of multipliers: Lef(z) = Az + O(z?) be the germ of a holomorphic
map in the plane fixing the origin. The multiplier = f’(0) is clearly invariant
under smooth conjugacies. On the other hane; 2z is topologically (even qua-
siconformally) conjugate te — 3.
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(2)

A remarkable theorem of Naishul asserts that when the origin is an indifferent
fixed point, the multiplier)\ is invariant under topological conjugacies. Here we
prove a weaker version of this result by using MRMT.

Theorem: Letf(z) = Az + O(2?) andg(z) = vz + O(z?) be quasiconformally
conjugate neab. If |A\| = 1, then\ = v.

Proof. Lety be a quasiconformal homeomorphism defined eahich satisfies
©(0) = 0andyp o f = g o p. Consider the Beltrami differential = 1, defined
near the origin, which is clearly-invariant. Lety, ¢ > 0 be sufficiently small and
define, fort € D(0, 1 + ¢), the Beltrami differentials

) tu(z) if|z|<é
pels) = 0 otherwise

Since f*p = p and f* is linear, it follows thatf*y, = u, near0. Lety, = @i :

C — C be the normalized solution of the Beltrami equation given by MRMT.
Theng, = ¢, o f o ;' is al-quasiconformal homeomorphism near the origin,
hence holomorphic there. Moreover— ¢;(z) is holomorphic for each fixed
sufficiently close to). Writing g;(2) = X\ z + O(2?), it follows thatt — ), is
holomorphic. Butg, is conjugate tof whose fixed point at = 0 is indifferent,
so|\| = 1forallt € D(0,1+ ¢), implying ¢t — )\ is constant. Nowp, = id
S0gy = f SO\, = A. Similarly, ¢, o o~! is conformal, say; is holomorphically
conjugate tgy, so\; = v. We conclude thak = v.

Linearization of hyperbolic germs: A holomorphic gerfite) = Az + O(z?) is
calledhyperbolicif |A| # 0,1. A classical theorem of Koenigs asserts that every
hyperbolic germ is holomorphically linearizable. The classical proof|Xpk 1,
consists of showing that the sequerdce™ f°"(z)},>1 converges uniformly in a
neighborhood of the origin to a holomorphic méplt is then clear tha®’(0) = 1
and®(f(z)) = A®(z). Here we give a proof of this result by applying MRMT.

Theorem (Koenigs): Iff(z) = Az + O(z?) is a hyperbolic germ, there exists a
holomorphic change of coordinate— ®(z) defined near the origin, witf(0) =
0, such thatb(f(z)) = A®(z).

Proof. Without losing generality, assumg < 1 (otherwise consider the local
inverse off). Choose a disk/ = (0, ) small enough so thagt(U) is compactly
contained inJ. It then follows by an induction thgt>"(U) is compactly contained
in for=1(U) for all n > 1, and thatf°"(z) — 0 for everyz € U. Let L denote

the linear contraction — 3 z. Take a smooth diffeomorphism : A = {z €

C: 1 <|z2] <1} = U f(U) subject only to the conditiofh(L(z)) = f(¢(z))
whenevetz| = 1. Extendy to a homeomorphisi® — U by definingy)(L°"(z)) =
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fo(¥(z)) foralln > 1 and allz € A. Theny is quasiconformal and satisfies

G(L(2)) = f(¥(z))  forallz € D.

Now consider the Beltrami differential = ., onID. Extendy to the entire plane
by taking pull-backs undek. The resulting Beltrami differential (still denote by
1) is easily seen to bé-invariant and with bounded dilatation. ¢f = ¢* is the
normalized solution of the Beltrami equation given by MRMT, it follows that the
conjugate homeomorphisin = g o L o ¢=! : C — C is holomorphic. Since
g(0) = 0, we must have(z) = vz for somer € C*.

Setd = p o4~L. Thend is al-quasiconformal homeomorphism defined in a
neighborhood of the fixed point By Weyl's Lemma® is holomorphic. Moreover,
® conjugates to g near0, sov = ¢’'(0) = f/(0) = A.

(3) Construction of Herman rings by surgery: Suppg¢sds a rational map of degree
d > 2 with a fixed Siegel disk\ of rotation number). Take another rational map
g of degreed’ > 2 with a fixed Siegel disk\’ of rotation number6. Following
Shishikura, we will construct a rational map of degreel+ d’ — 1, with a Herman
ring of rotation numbe#. The idea is to cut out invariant disks fratmand A’ and
paste the resulting sphere-with-holes along the boundary to obtain a sphere. There
is an obvious action on this sphere coming from the actioharidg on the pieces.
We apply MRMT to realize this action as a rational map.
More precisely, let) : A — D(0,2) and¢ : A’ — D(0,2) be conformal
isomorphisms which satisfy

O(f(2)) = e™¢(z) and P(g(z)) = e "(2).
Let
y={z€A:|p(z)|=1} and o ={ze€ A" :|Y(2)] =1}.
The mapping: : v — +' defined byh(z) = ¢»~'(¢(z)) is a smooth orientation-
reversing diffeomorphism which satisfig§f (z)) = g(h(z)) for all = € . Extend
h to a quasiconformal homeomorphigm C — C with the following properties:
e h maps intvy) to exty’) and exty) to int(y’). (Here “int” refers to the comple-

mentary component of the Jordan curve which contains the center of the Siegel
disk and “ext” refers to the other component.)

e 1 is conformal in a neighborhood Gf . (AN RTHA).
Define
~ f(2) if 2 €yUext(y)
F(z) = _ )
(h™ltogoh)(z) if z€int(y)

Itis easy to check thaf is a degre@+d’— 1 branched covering of the sphere which
is locally quasiconformal away from its branch points. Moreovers ANh~1(A)
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is a “topological Herman ring” of rotation numbeérfor F,andF is holomorphic
in a neighborhood of ~. F~1(A).

To conjugatea to arational map, define a Beltrami differentzied)n@ as follows.
First defineu on A by

o  onAnexty)
e h*pe onAnint(y)

(Wherey, is the zero Beltrami differential corresponding to the standard conformal
structure of the sphere). Clearly,: A — A preserves.. Extendy to the union
U,>1 F7"(A) by pulling back via the appropriate iterate 5t Note that only

the first pull-back tof*l(A) . A can possibly increase the dilatation @f all
further pull-backs are taken by iteratesfofwhich are holomorphic and so do not
change the dilatation. On the complement of this unionysety,. The Beltrami
differential 1 defined this way is clearlﬁ-invariant and has bounded dilatation. It
follows thatF = ¢* o F o (¢*)~!is a rational map with a Herman ring‘(A) of
rotation numbep.

Lecture 21.

We present a simplified version of Sullivan’s proof of Fatou’s no wandering domain
conjecture, following N. Baker and C. McMullen.

(1)

(@)

Theorem (Sullivan): Lef € Rat; with d > 2. Then every Fatou componetitof f
is eventually periodic, that is, there exist>- m > 0 such thatf°"(U) = f°™(U).

The idea of the proof is as follows: Assuming there existgaamderingFatou
component (or simply awandering domai)) we change the conformal structure
of the sphere along the grand orbit©@fto find an infinite-dimensional family of
rational maps of degreg all quasiconformally conjugate th This is a contradic-
tion since the space Rabf rational maps of degre€ as a Zariski open subset of
CP?¥*1, is finite-dimensional. The eventual periodicity statement for entire maps
is false. For example, the map— z + sin(27z) has wandering domains.

Lemma (Baker): U is a wandering domain for a rational mgpthen f°*(U) is
simply-connected for all large.

Proof. LetU,, = f°"(U). Replacing’ by U}, for some large if necessary, we may
assume that nb,, contains a critical point of, so thatf°" : U — U, is a covering

map for alln. We can also arrange that € U. Since thdJ,, are disjoint subsets of
C~ U forn > 1, we havearea(U,,) — 0. But{f°"|y} is a normal family, so every

convergent subsequence of this sequence must be a constant function. In particular,

diam(f°"(K)) — 0 for every compact sek’ C U. Take any loopy C U and set
Yo = ["(y) C U,. By the above argumediam(~,) — 0. If B, is the union of the
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bounded components @f \ ~,, it follows thatdiam(B,,) — 0 also. Sincef(B,)

is open,df(B,) C Yni1, anddiam f(B,) — 0, we must havef(B,,) C B, for
largen. In particular, the iterated images 6%, are subsets of ~ U for largen.
Montel’'s theorem then implie®, C F(f), which givesB, C U,. Thus~, is
null-homotopic inU,, for largen. Sincef°" : U — U, is a covering map, we can
lift this homotopy toU, which provedJ is simply connected.

Let a rational magf have a wandering domaiti. In view of the above lemma,
we can assume that, = f°"(U) is simply-connected and : U, — U, is a
conformal isomorphism for ak > 0. Given anL*>° Beltrami differentialu defined
on U, we can construct affi-invariant > Beltrami differential onC as follows.
Use the forward and backward iteratesfdb spread: along the grand orbit

GOWU)={z€ C: f"(z) € U, for somen, m > 0}.

On the complemer‘(AfI ~ GO(U), setu = uo. The resulting Beltrami differential is

~

defined almost everywhere @ it satisfiesf*. = u by the way it is defined, and
|||l < oo since spreading|; alongGO(U) by the iterates of the holomorphic
map f does not change the dilatation. Now consider the deformation ¢u for
|t| < e, wheres > 0 is small enough to guarantde;||. < 1if |¢| < . Note that
sincef is holomorphic,f* acts as a linear rotation, §6u; = u:. Lety; = @t -

C — C be the normalized solution of the Beltrami equation); = 11, ;). which
fixes0, 1,00. Thenf, = ¢, o f o ¢; ! is a rational map of degreg andt — f, is
holomorphic, withf, = f. The infinitesimal variation

d

wz) = 2| )

defines a holomorphic vector field whose value ks in the tangent spad@.,C.

In other wordsw is a holomorphic section of the pull-back bungWe(T@) which
in turn can be identified with a tangent vectoffifRat;. This is the so-callethfini-
tesimal deformationf f induced byu. We say thaj: induces drivial deformation
if w=0.

Another way of describingy is as follows: First consider the unique quasicon-
formal vector field solution to the equatiély = 1 which vanishes al, 1, co. This
is precisely the infinitesimal variatiof)|,—o ¢+ () of the normalized solution of the
Beltrami equation. It is not hard to check that= 4 ;v, where

drv(z) = v(f(2)) = f(2)v(2)

measures the deviation offrom being f-invariant. Note in particular thaf;v
is holomorphic even thoughis only quasiconformal, and that = ;v depends
linearly ony, a fact that is not immediately clear from the first descriptiomott
follows thaty, induces a trivial deformation if and onlyifis f-invariant.
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(4)

()

It is easy to see that the triviality conditionv = 0 forceswv to vanish on the
Julia setJ(f). Infact, letzg — 27 — --- — 2z, = z, be a repelling cycle of
with multiplier A. Then the conditiod ;v = 0 impliesv(z;+1) = f'(2;)v(z;) for
allj=0,...,n—1, sothat

1:[ v(z) =X~ 1:[ v(z;).

Since|\| > 1, it follows thatv(z;) = 0 for some, hence for all. Now J(f) is the
closure of such cycles andis continuous, se(z) = 0 forall z € J(f).

The above construction gives well-defined linear maps
B(U) < B(C, f) - TyRat,

Here B(U) is the space oL.> Beltrami differentials inU, B(@, f) is the space of

f-invariantL>° Beltrami differentials o, andD is the linear operataby = w =
d v constructed above.

Lemma: B(U) contains an infinite-dimensional subspa¢@/) of compactly sup-
ported Beltrami differentials with the following property: if € N(U) satisfies
p = Ov for some quasiconformal vector fieldwith v|s; = 0, theny = 0.

Assuming this lemma for a moment, let us see how this implies the theorem. Con-
sider the above subspad&U) for a simply-connected wandering domdinand
restrict the above diagram to this subspacé(f.) = 0 for someu € N(U), orin

other words ifi induces a trivial deformation, that means the normalized solution
v to Ov = pis f-invariant. Hencer = 0 on J(f) and in particular on the boundary

of U. By the property ofN(U), 1 = 0. This means that the infinite-dimensional
subspaceV (U) injects into7yRat; whose dimension i8d + 1. The contradiction
shows that no wandering domain can exist.

It remains to prove the aboveALemma. Let us first consider the corresponding prob-
lem for the unit diskD. Let N(D) C B(D) be the linear span of the Beltrami
differentialsy, () = z¥% for k > 0. The vector field

1
—Ekﬂg |z| <1
Vi(z) = k+1 0z
' sz(kﬂ)ﬁ 2| > 1
k+1 0z -

solves the equatio@lV;, = ju, onD. Lety = dv € JV(]D) andv|gp = 0, and take
the appropriate linear combinatiénof the V;, which solves)V = p. ThenV — v

is holomorphic inD and coincides with” on the boundaryD. This is impossible
if V|ap has any negative power ofin it. Henceu = 0. To get the compact support
condition, letN (D) c B(U) consist of all Beltrami differentials which coincide
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with an element ofV(D) on the disk|2| < ! and are zero o8 < || < 1. If
i = dv € N(D) andv|sp = 0, thenv has to be zero on the annulys< |z| < 1
since it is holomorphic there. In particular, it is zero jah = ;. Now the same
argument applied to the digk| < 1 showsy = 0.

For the general case, consider a conformal isomorphismD =, U with
the inversep = ¢! and defineN(U) = ¢*(N(D)). Letv = v(z)Z be a
quasiconformal vector field such that= dv € N(U) andv|sy = 0. Then
9. (v) = v(¢(2)) /' (z) Z is a vector field orD> which is holomorphic near the
boundaryoD andv((z)) — 0 as|z| — 1. By the reflection principley(y(z)) is
identically zero near the boundary Bf Sincey*y = 0¢.(v) € N(D), we must
havey* . = 0, which impliesy = 0.

(6) Sullivan’s original argument had to deal with two essential difficulties: (i) the pos-
sibility of U being non simply-connected, perhaps of infinite topological type; (ii)
the possible complications near the boundary/offor example wher®U is not
locally-connected. He addressed the former by using a direct limit argument, and

the latter by using Caradlodory’s theory of “prime ends.” Both of these difficulties
are surprisingly bypassed in the present proof.

Lecture 22.

(1) LetA C C be a set with at least points andl’ be a connected complex manifold

with base point,. A holomorphic motion oft over(T,t) isamapp : Tx A — C
such that

(i) z— ¢(t, z) is injective for each € T.
(i) ¢t — (t, z) is holomorphic for each € A.
(iii) o(to,z) = z for everyz € A.
In other words{y;(-) = ¢(¢, ) }er is @ holomorphic family of injections of into
C, with ¢, = id 4.
(2) Remarks:
e There is no assumption on the joint continuityoin (¢, z), or even continuity

in z for fixed ¢t. They follow automatically from the-Lemma to be discussed
below.

e For our purposes, we usually takg, t,) = (ID,0) and cally a holomorphic
motion overD.

e We can always assume that the motionémalizedin the sense thdt, 1, co
belong toA and they remain fixed under the motion. To see this, take distinct
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~

pointszy, 2o, 23 In A and leta, 5, € Aut(C) be determined by
a(0) =2z a(l)=2 a(co) =2z
and

Bilei(z1)) =0 Bilpi(22)) =1 Bi(ipe(z3)) = 0.
Theny; = 3; o p; o a is @ normalized holomorphic motion af '(A).
(3) Examples:
o LetA={0,1,00,a}andr : D — @\{0, 1, 00} be the holomorphic universal
covering map which satisfieg0) = a. Then{y; }.cp defined by
e(0) =0 @(1) =1 @i(c0) =00 ¢(a)=m(t)
is a holomorphic motion ofi overD.
e Let A be the latticéZ @ iZ and defing{¢; },cm by

or(m +1in) =m+tn
is a holomorphic motion oft over (H, 7).

o Letf: C — Cbe a quasiconformal homeomorphism ang ¢. For|t| < 1,
let o, = ' be the normalized solution of the Beltrami equation given by
MRMT. Theng; is a holomorphic motion of overD. Thus, every quasicon-
formal homeomorphism of the sphere gives rise canonically to a holomorphic
motion of the sphere.

e LetU C C be a Jordan domain. Suppose there are conformal isomorphisms
fi: U— Ul (i = 0,1) depending holomorphically on a parameter D such
thatU; c U andU? NU} = (. For every finite word, - - - i,, of 0's and1’s, let

U= firo-o fit(U)
and define the Cantor sets
K=o
n>1

Then theK,; determine a holomorphic motion of the base Cantor/§gbver
D. To see this, take a € K, and suppose that it is represented by the infinite
wordiyisis . .. SO that

2=UrNUMNUM N
Define
o(t,z) =Ur NUM>NUMBN... € K,
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Note thaty(t, 2) is the locally uniform limit of the sequence of holomorphic
functionsy,,(t) = f;" o---o f;*, so it depends holomorphically @nlt is now
easy to check thdt, z) — ¢(t, z) is a holomorphic motion of, overD.

(4) LetE C C be a set with at leadt points. A homeomorphisnfi: £ — f(E) C C

is calledquasiconformaif there exists an/ > 0 such that
diSt@\{O,l,oo}<X(f(Zl>7 f(ZQ)v f(z3)7 f(24)), X(Zh 225 %3, Z4)) <M

for all quadruplegz, 29, 23, z4) in E. Heredist@\{omoo} is the hyperbolic distance
in the trice puncture sphere ands the cross ratio defined by

23 —R1 R4 — R2

X(21,22,23,24) = .
Z9 —Z1 R4 — 23

It is not hard to check that tflis definition of quasiconformality coincides with the
standard definition wher = C.

(5) A-Lemma (Mdie-Sad-Sullivan and Lyubich): A holomorphic motipn D x A —
C extends uniquely to a holomorphic motidn: D x A — C. Moreover,® is
continuous oD x A and®, : A — &,(A) is a quasiconformal homeomorphism
for eacht € D.

Proof. Without losing generality, assume that the motion is normalized. By Mon-
tel's Theorem,

F={t—o(t,2z):2z€ A}

is a normal family of holomorphic function® — C, so it has compact closure
F in Hol(D, C). Moreover, iff, g € F are distinct, thery(t) # ¢(t) for all ¢ €
D. To see this, tak¢,,g, € F such thatf, # g., f» — fandg, — g, and
note thatt — f,(t) — g,(t) is nowhere vanishing by the injectivity property of
holomorphic motions. It follows from Hurwitz Theorem that— f(t) — g(t) is
nowhere vanishing as well.

For eacht € D consider the continuous map

mn:F—C m(f) = f(b).

By the above observation, is injective. SinceF is compact, it follows thatr, is
a homeomorphism onto its image, which is easily seen to be the closyyeAf.
Now

O(t,z) = m omy(2) (t,2) €D x A4,

extendsy to a motion ofA.

The definition of the compact-open topology &rshows that for each < 1, the
family {m } <, is equicontinuous, so the same must be true for the fafdily ;<.
It follows that® is continuous on the produbt x A.
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Finally, choose a quadruple, z., z3, z;) in A and define a holomorphic map
g:D—C~{0,1,00} by

9(t) = x(Pe(21), Pi(22), Py(23), Pi(24)).

By Schwarz Lemma,

‘ 14|t
distz _ (01 Oo}(g(zf) 9(0)) < distp(t,0) = log (1 — :tD ;

or

1+t
ists 0y o0y (X(Bi(21), By(22), Bulz5), Do), X2, 22, 28, 24)) < log ( | ') |

which shows eack, : A — ®,(A) is quasiconformal.

(6) The Improved\-Lemma (Slodkowski): A holomorphlc motiop : D x A — C
extends to a holomorphlc motioh : D x C — C. The extended motio® is
continuous o x C andd, : C—-Cis K;-quasiconformal for eache D, where

_ L4
Ky = -

(7) Remarks:

e It was proved by Sullivan and Thurston that there exists a universal constant
0 < a < 1 such that every holomorphic motion dfoverD extends to a holo-
morphic motion of the sphere over the smaller digk, «). Bers and Royden
proved that one can take= ;. Moreover, their extended motion ov(0, ;)
had the advantage of being canonical in the sense that the Beltrami differen-
tial ug, iIs harmonic on each component@f\ A. (A Beltrami differentialy
on a hyperbolic Riemann surfacé is calledharmonicif y = # for some

holomorphic quadratic differential on X'.) With this additional property, they
proved that the extended motion is unique.

e As Sullivan and Thurston observed, to obtain the improvddcemma, it suf-
fices to prove the followingnolomorphic axiom of choiceGiven a finite set
A and a pointa ¢ A, every holomorphic motion ofi over D extends to a
holomorphic motion ofd U {a} overD.

¢ In the original version oA-Lemma,D can be replaced with an arbitrary con-
nected complex manifold, as essentially the same proof shows. In the Bers-
Royden version]) can be replaced with the unit ball in any complex normed
linear space. In the improvektLemma, howeverD cannot be replaced for
free; see the next example.
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(8) Example (Douady): Let” = C {0,1, 00}, with the base point, = 2. Let
A ={0,1,2,00} and define a holomorphic motign: 7' x A — C by

i(0) =0 w(l) =1 ¢o0) =00 ¢(2) =t
This motion ismaximalin the sense that it cannot be extended to a holomorphic
motion of any bigger set ovél. To see this, it suffices to show that every holo-
morphic mapf : T' — T has a fixed point. Suppose by way of contradiction that
such a fixed point free map exists. By Picard’s Great Theorem, nofelofo
can be an essential singularity ffr so f extends to a rational map: C — C of
degreed > 1. As f~1{0,1,00} C {0,1,00}, f acts bijectively on{0,1,00}. By
the assumption all theé + 1 fixed points off are amondg0, 1,00}. If d =1, fis
an automorphism which fixe), 1, co} pointwise or fixes one of them and swaps
the other two. In either case, it must have a fixed point out§idé, co}, which is
a contradiction. Ifd > 1, each fixed point if0, 1, 0o} is a critical point of order
d—1 and in particular is a simple (i.e., multiplicity fixed point. Sincef has2d—2
critical points altogether, it follows that has at mosg fixed points in{0, 1, co}.
Thusd + 1 < 2, which is again a contradiction.

(9) The analogue of-Lemma is certainly false for continuous motions. As an ex-
ample, letA = {1}, and define the continuous motign: R x A — C by
o(t,1) = 1 + int. Evidently,¢ has no continuous extensionlfox A.



