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Lecture 1.

(1) A Riemann surfaceX is a connected complex manifold of dimension1. This means
that X is a connected Hausdorff space, locally homeomorphic toR2, which is
equipped with acomplex structure{(Ui, zi)}. Here eachUi is an open subset ofX,

the union
⋃

Ui is X, eachlocal coordinatezi : Ui

∼=−→ D is a homeomorphism, and
wheneverUi ∩Uj 6= ∅ the change of coordinatezjz

−1
i : zi(Ui ∩Uj) → zj(Ui ∩Uj)

is holomorphic.

In the above definition we have not assumed thatX has a countable basis for
its topology. But this is in fact true and follows from the existence of a complex
structure (Rado’s Theorem).

(2) A mapf : X → Y between Riemann surfaces is holomorphic ifw ◦ f ◦ z−1 is a
holomorphic map for each pair of local coordinatesz on X andw on Y for which
this composition makes sense. We often denote this composition byw = f(z). A
holomorphic mapf is called abiholomorphismor conformal isomorphismif it is a
homeomorphism, in which casef−1 is automatically holomorphic.

(3) Examples of Riemann surfaces: The complex planeC, the unit diskD, the Riemann
spherêC, complex toriTτ = C/(Z⊕ τZ) with Im(τ) > 0, open connected subsets
of Riemann surfaces such as the complement of a Cantor set inC.

(4) The Uniformization Theorem: Every simply connected Riemann surface is confor-
mally isomorphic tôC, C, orD.

(5) Classical form of Schwarz Lemma: Iff : D → D is holomorphic andf(0) = 0,
then|f ′(0)| ≤ 1. If |f ′(0)| = 1, thenf is a rigid rotation around the origin.

(6) If f : D(p, δ) → D(q, ε) is holomorphic, then|f ′(p)| ≤ ε
δ
.

(7) Corollary (Liouville): Every bounded holomorphic functionC → C must be con-
stant.

Lecture 2.

(1) Theautomorphism groupof a Riemann surfaceX is the group of all conformal
isomorphismsX → X. It is denoted by Aut(X).
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(2) Theorem:

Aut(Ĉ) = {z 7→ az + b

cz + d
: a, b, c, d ∈ C andad− bc 6= 0} ∼= PSL2(C)

In particular, Aut(Ĉ) is a connected complex Lie group of dimension3, homeo-
morphic to the productRP3 × R3 (this follows, for example, from the Iwasawa
Decomposition).

(3) Theorem:

Aut(C) = {z 7→ az + b : a, b ∈ C anda 6= 0}
Thus, Aut(C) can be identified with the subgroup of Aut(Ĉ) consisting of the maps
which fix the point at infinity. It follows that Aut(C) is a connected complex Lie
group of dimension2, homeomorphic to the productC∗ × C.

(4) Theorem:

Aut(D) = {z 7→ λ

(
z − a

1− az

)
: a ∈ D andλ ∈ C with |λ| = 1}

Thus, Aut(D) can be identified with the identity component of the subgroup of
Aut(Ĉ) consisting of the maps which commute with the reflectionz 7→ 1

z
. In

particular, Aut(D) is a connected real Lie group of dimension3, homeomorphic to
the productD× S1.

(5) Theorem:

Aut(H) = {z 7→ az + b

cz + d
: a, b, c, d ∈ R andad− bc > 0} ∼= PSL2(R)

Thus, Aut(H) can be identified with the identity component of the subgroup of
Aut(Ĉ) consisting of the maps which commute with the reflectionz 7→ z.

(6) The action of Aut(Ĉ) on Ĉ is simply3-transitive. Similarly, the action of Aut(C)
onC is simply2-transitive. The action of Aut(D) onD is transitive but not simply
transitive.

(7) Every non-identityσ ∈ Aut(Ĉ) has two fixed points counting multiplicities. Ifσ
has a double fixed point, it can be conjugated to the translationz 7→ z + 1. In this
case we call itparabolic. If σ has two distinct fixed points, it can be conjugated to
the linear mapz 7→ λz for someλ ∈ C r {0, 1}. The pair{λ, λ−1} is uniquely
determined byσ. We callσ elliptic if |λ| = 1, hyperbolicif λ ∈ R and|λ| 6= 1, and
loxodromicotherwise.

(8) An elementσ ∈ Aut(Ĉ) can be thought of as a matrix in PSL2(C), soτ = tr2(σ)
is well-defined. Then,σ is parabolic ifτ = 4, elliptic if τ ∈ [0, 4[, hyperbolic if
τ ∈ ]4, +∞[, and loxodromic ifτ ∈ Cr [0, +∞[.
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(9) Let σ, ν be non-identity elements in Aut(Ĉ). If Fix(σ) = Fix(ν), thenσν = νσ.
Conversely, ifσν = νσ, then Fix(σ) = Fix(ν) unlessσ andν are involutions,
each interchanging the two fixed points of the other (such as the commuting pair
σ(z) = −z andν(z) = 1

z
).

(10) Corollary: Two non-identity elements of Aut(C) or Aut(D) commute if and only if
they have the same fixed point set.

Lecture 3.

(1) Review of covering space theory:

• Let X be a connected finite dimensional manifold. There exists a covering
spaceπ : X̃ → X, with X̃ simply-connected, called theuniversal coveringof
X. It is unique up to isomorphism of coverings.

• The deck groupof π : X̃ → X, denoted byΓX , consists of all homeomor-
phismsγ : X̃ → X̃ which satisfyπγ = π. Algebraically,ΓX is isomorphic
to the fundamental groupπ1(X). Once a base pointx ∈ X is chosen, an iso-
morphism betweenΓX andπ1(X, x) can be defined by sendingγ ∈ ΓX to the
homotopy class of the projection of any path joining somex̃ ∈ π−1(x) to γ(x̃).

• ΓX actssimply transitivelyon the fibers ofπ: If x̃, ỹ ∈ X̃ with π(x̃) = π(ỹ),
there exists a uniqueγ ∈ ΓX such thatγ(x̃) = ỹ. In particular, ifγ ∈ ΓX has
a fixed point, thenγ = id.

• ΓX actsevenlyonX̃: Every point inX̃ has a neighborhoodU such thatγ(U)∩
U = ∅ for all γ ∈ ΓX r {id}. In particular,ΓX is a discrete subgroup of the
homeomorphism group of̃X. The quotientX̃/ΓX is a Hausdorff manifold
homeomorphic toX.

There is a one-to-one correspondence between subgroups ofΓX and coverings of
X as follows.

• Given a subgroupH ⊂ ΓX , the quotientY = X̃/H is a covering ofX, with
the covering mapp : Y → X defined by sending theH-orbit of x̃ ∈ X̃ to the
ΓX-orbit of x̃. For this covering,π1(Y ) ∼= H and the projectioñX → Y is the
universal covering. The deck group ofp : Y → X is isomorphic toN(H)/H,
where

N(H) = {γ ∈ ΓX : γHγ−1 ⊂ H}

is the normalizer ofH in ΓX .
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• Conversely, given any coveringp : Y → X, there exists a covering map
q : X̃ → Y such thatpq = π. Moreover, there exists a subgroupH ⊂ ΓX

isomorphic toπ1(Y ) such thatX̃/H is homeomorphic toY .

(2) If X is a Riemann surface, the topological universal coveringπ : X̃ → X can be
equipped with the pull-back complex structure so as to makeX̃ into a Riemann
surface,π into a holomorphic map, andΓX into a subgroup of Aut(X̃).

(3) Corollary: Every Riemann surfaceX can be represented as̃X/Γ, whereX̃ is con-
formally isomorphic toĈ, C or D, andΓ is a subgroup of Aut(X̃) isomorphic to
π1(X) which acts evenly oñX.

(4) A Riemann surfaceX is calledspherical, Euclidean, or hyperbolicaccording as its
universal covering̃X is conformally isomorphic tôC, C orD.

• X̃ ∼= Ĉ. Since every automorphism of̂C has a fixed point, the only subgroup
of Aut(Ĉ) which acts evenly on̂C is the trivial group. It follows thatX ∼= Ĉ.

• X̃ ∼= C. The only fixed point free automorphisms ofC are translations. It
easily follows that the only subgroups of Aut(C) which act evenly are the
trivial group, or the group generated by a single translationz 7→ z + b, or the
group generated by two translationsz 7→ z + b1 andz 7→ z + b2, with b1

b2
/∈ R.

It follows thatX ∼= C, or X ∼= C∗, or X ∼= a complex torus.

• X̃ ∼= D. All other Riemann surfaces are therefore in this category. In partic-
ular, a Riemann surface with non-abelian fundamental group must be hyper-
bolic.

(5) Examples: The punctured diskD∗ and the annuliA(1, R) = {z : 1 < |z| < R} are
hyperbolic. In fact, these are the only hyperbolic Riemann surfaces with non-trivial
abelian fundamental group. The trice punctured sphereĈ r {a, b, c} is hyperbolic
since its fundamental group is non-abelian. If we assume{a, b, c} = {0, 1,∞}
(a normalization which can always be achieved by applying an automorphism of
Ĉ), an explicit universal covering map is given by theelliptic modular function
H→ Cr {0, 1}.

(6) Let f : X → Y be a holomorphic map between Riemann surfaces. IfX is non-
hyperbolic andY is hyperbolic, thenf is constant.

(7) Corollary (Picard): An entire function which omits two distinct values is constant.

(8) Corollary: A domainX ⊂ Ĉ is hyperbolic iffĈ rX has at least three points.

Lecture 4.
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(1) Letp ∈ D, v ∈ TpD and chooseϕ ∈ Aut(D) so thatϕ(p) = 0. Define

‖v‖ = 2 |ϕ∗v|
This is independent of the choice ofϕ since by Schwarz Lemma everyψ ∈ Aut(D)
with ψ(p) = 0 coincides withϕ up to a rotation. Explicitly, takeϕ(z) = z−p

1−pz
so

that

ϕ∗v = ϕ′(p)v =
v

1− |p|2 .

Then

‖v‖ =
2

1− |p|2 |v|.

We write this metric as

ρD =
2

1− |z|2 |dz|.

and call it thehyperbolicor Poincaŕe metricof the disk.
PullingρD back by the conformal isomorphismf : H→ D defined by

f(z) =
i− z

i + z
,

we obtain the following formula for the hyperbolic metric ofH:

ρH =
1

Im(z)
|dz|.

The Gaussian curvature ofρH at z = x + iy ∈ H can be computed as

−∆ log ρH(z)

ρ2H(z)
= y2

(
∂2

∂x2
+

∂2

∂y2

)
log y = y2 · −1

y2
= −1

Since the curvature is a conformal invariant, the same holds forρD.

(2) Corollary: There exists a smooth Riemannian metric on the unit disk which is
invariant under the action of Aut(D). It is unique up to multiplication by a positive
constant, which can be chosen so as to normalize the Gaussian curvature of this
metric to−1.

(3) Here are some properties ofρD. We use the notationsdistD(·, ·) andBD(p, r) for
the hyperbolic distance and the hyperbolic ball centered atp of radiusr > 0. The
same notations without the subscriptD will denote the Euclidean data.

• ρD is a conformalmetric, i.e., at every point it is a positive multiple of the
Euclidean metric.

• ρD(z) → +∞ as|z| → 1. In fact,ρD(z) is asymptotic to 1
dist(z,∂D)

asz → ∂D.
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• Any two pointsp, q ∈ D can be joined by a unique minimal geodesic. This ge-
odesic is part of the Euclidean circle passing throughp, q which is orthogonal
to ∂D.

• We have

distD(0, z) = log

(
1 + |z|
1− |z|

)
for all z ∈ D.

It follows that

BD(0, r) = B
(
0, tanh

(r

2

))

By applying elements of Aut(D), we conclude that every hyperbolic ball is a
Euclidean ball, perhaps with a different center.

• Closed balls in(D, distD) are compact. Hence(D, distD) is a complete metric
space.

(4) Let X be a hyperbolic Riemann surface andπ : D → X be its universal covering.
The hyperbolic metricρD is invariant under the action of the deck groupΓX ⊂
Aut(D), so it descends to a well-defined Riemannian metricρX on X. In local
coordinatesw = π(z), the metricρX = ρX(w) |dw| satisfies

ρX(π(z)) =
ρD(z)

|π′(z)| =
2

(1− |z|2) |π′(z)|
Clearly, this metric onX makesπ into a local isometry.

(5) Some properties ofρX :

• ρX is a conformal metric of constant curvature−1.

• Closed balls in(X, distX) are compact. Hence(X, distX) is a complete metric
space.

• Geodesics inX are theπ-images of geodesics inD.

• Any pairp, q ∈ X can be joined by at least one minimal geodesic, obtained as
follows: Choosẽp ∈ π−1(p) andq̃ ∈ π−1(q) so that

distD(p̃, q̃) = distD(π−1(p), π−1(q)).

Then, theπ-image of the geodesic joining̃p to q̃ is a minimal geodesic joining
p to q. In particular,

distX(p, q) = distD(π−1(p), π−1(q)).

(6) Example: Using the universal covering mapπ : H → D∗ given byπ(z) = e2πiz,
we find that the hyperbolic metric onD∗ has the form

ρD∗ =
−1

|z| log |z| |dz|.
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A neighborhood of the cusp inD∗ can be embedded isometrically inR3 as the
pseudo-sphere, i.e., the surface obtained by revolving thetractrix about its axis.

Lecture 5.

(1) Let f : X → Y be a holomorphic map between hyperbolic Riemann surfaces. We
define

‖f ′(z)‖ =
ρY (f(z))

ρX(z)
|f ′(z)|.

To emphasize the metrics used in the domain and range, we sometimes use the
more descriptive notation‖f ′(z)‖ρX ,ρY

, or ‖f ′(z)‖ρX
whenX = Y . Note that

unlike |f ′(z)| which depends on the choice of the coordinates, the norm‖f ′(z)‖ is
a well-defined function onX. Clearly,f is a local isometry iff‖f ′(z)‖ = 1 for all
z ∈ X. Note also that

‖(g ◦ f)′(z)‖ = ‖g′(f(z))‖ · ‖f ′(z)‖
(2) Example: Letϕ : D → D be holomorphic. Then‖ϕ′(z)‖ = 1 for all z ∈ D iff

ϕ ∈ Aut(D).

(3) If f : D → D is holomorphic, then‖f ′(z)‖ ≤ 1 for all z ∈ D. If equality holds at
somez, then it holds everywhere andf ∈ Aut(D).

(4) Corollary: Iff : D→ D is holomorphic, then

|f ′(z)| ≤ 1− |f(z)|2
1− |z|2 for all z ∈ D

(5) Invariant form of Schwarz Lemma: Letf : X → Y be a holomorphic map between
hyperbolic Riemann surfaces. Then‖f ′(z)‖ ≤ 1 for all z ∈ X. Moreover, exactly
one of the following must be the case:

• The equality‖f ′(z)‖ = 1 holds for allz, f is a local isometry and a covering
map.

• The strict inequality‖f ′(z)‖ < 1 holds for allz, f is a contraction and not
a covering map. In this case, for every compact setK ⊂ X there exists a
constant0 < c = c(K) < 1 such that

distY (f(z), f(w)) ≤ c distX(z, w) for all z, w ∈ K

(6) Example:f : D→ D defined byf(z) = zn is not a covering map, so it must satisfy
‖f ′(z)‖ < 1 for all z ∈ D. In fact,

‖f ′(z)‖ =
n|z|n−1(1− |z|2)

1− |z|2n
< 1.
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Note however that‖f ′(z)‖ → 1 as|z| → 1. On the other hand, the samef viewed
as a mapD∗ → D∗ is a covering, hence a local isometry. This time

‖f ′(z)‖ =
n|z|n−1|z| log |z|
|z|n log |z|n = 1.

(7) Corollary: If X ( Y are hyperbolic Riemann surfaces, the inclusionι : X ↪→ Y

satisfies‖ι′(z)‖ = ρY (z)
ρX(z)

< 1 for all z ∈ X. In particular,

distY (z, w) < distX(z, w) for all z, w ∈ X.

Note that‖ι′(z)‖ → 0 asz → ∂X ∩ Y .

Lecture 6.

(1) LetX andY be Riemann surfaces. Denote by C(X, Y ) the space of all continuous
maps fromX to Y . This space is endowed with thecompact-open topologyT. A
basis forT is given by the collection

UK,O = {f ∈ C(X,Y ) : f(K) ⊂ O},
whereK runs through the compact subsets ofX and O runs through the open
subsets ofY .

(2) The space C(X, Y ) is in fact metrizable. A metric which induces the topologyT

can be constructed as follows. Let{Kj} be anexhaustionof X by a sequence of
compact subsets, that is

X =
∞⋃

j=1

Kj and Kj ⊂ int(Kj+1) for j = 1, 2, 3, . . .

Choose any metricdY on Y compatible with its topology. Forf, g ∈ C(X,Y )
define

dj(f, g) = min

{
1, sup

z∈Kj

dY (f(z), g(z))

}
j = 1, 2, 3, . . .

and

d(f, g) =
∞∑

j=1

2−j dj(f, g).

It is easy to check thatd is in fact a metric on C(X,Y ), and that it is compatible
with T. Furthermore,d(fn, f) → 0 iff fn → f uniformly on every compact subset
of X. For this reason,T is also calledthe topology of local uniform convergence.
In what follows, by the convergence of a sequence we always mean convergence in
this topology, unless otherwise stated.



9

(3) A sequencefn ∈ C(X, Y ) tends to infinity inY if for every pair of compact sets
K ⊂ X andK ′ ⊂ Y we havefn(K) ∩K ′ = ∅ for all largen.

The definition is interesting only whenY is non-compact. Note also that tending
to infinity depends strongly on the target surfaceY . For example,fn(z) = z + n
tends to infinity as a sequence of mapsC → C, but does not tend to infinity as a
sequence of mapsC→ Ĉ.

(4) A family F ⊂ C(X, Y ) is normal if every sequence inF has either a convergent
subsequence or a subsequence which tends to infinity inY .

Clearly, the second possibility never occurs ifY is compact. Also note that
normality is a local property, i.e.,F is normal iff everyp ∈ X has a neighborhood
U such thatF|U is normal.

(5) The problem of deciding whether a given family is normal can be quite diffi-
cult. Fortunately, for families of holomorphic maps this problem has a surprisingly
neat answer, provided by Montel, which is based on the following lemma. Let
Hol(X, Y ) denote the closed subspace of C(X, Y ) consisting of all holomorphic
mapsX → Y .

Lemma: LetX andY be hyperbolic Riemann surfaces, andK ⊂ X andK ′ ⊂ Y
be compact. Then

AK,K′ = {f ∈ Hol(X,Y ) : f(K) ⊂ K ′}
is a compact subset of Hol(X, Y ).

Lecture 7.

(1) Montel’s Theorem: IfY is a hyperbolic Riemann surface, then Hol(X, Y ) is a
normal family.

(2) LetY ⊂ Ĉ be a hyperbolic domain andfn ∈ Hol(X, Y ) tend to infinity inY . Then
there is aw0 ∈ ∂Y and a subsequence{fnk

} which converges tow0 in Hol(X, Ĉ).

(3) Classical form of Montel’s Theorem: Take three distinct pointsa, b, c ∈ Ĉ and let
Fa,b,c ⊂ Hol(X, Ĉ) consist of allf which satisfyf(X) ⊂ Ĉr {a, b, c}. ThenFa,b,c

is normal.

(4) Let X be a Riemann surface andf : X → X be a holomorphic map. TheFatou
setF (f) consists of all points inX with a neighborhoodU such that the family
{f ◦n|U : U → X}n≥1 is normal. TheJulia setJ(f) is the complementX rF (f).

(5) Examples: Consider the caseX = Ĉ. ThenJ(f) = ∂D if f(z) = zn, andJ(f) = ∅
or a point iff is an automorphism.

(6) Some basic properties:
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• J(f) is closed andF (f) is open. Either set can be empty. Every connected
component ofF (f) is called aFatou componentof f .

• J(f), henceF (f), is totally invariant, that is

z ∈ J(f) ⇐⇒ f(z) ∈ J(f).

As a result,J(f) enjoys a great deal ofself-similarity: If z ∈ J(f) is not a crit-
ical point off , then there exist neighborhoodsU of z andV of f(z) such that
f : U → V is a conformal isomorphism mappingU ∩J(f) homeomorphically
to V ∩ J(f).

• For anyk ≥ 1, J(f) = J(f ◦k), henceF (f) = F (f ◦k).

Recall that themultiplier of a p-cycle z0 7→ z1 7→ · · · 7→ zp = z0 is the quantity
λ = (f ◦p)′(z0) ∈ C which is well-defined on a Riemann surface. The cycle is
attracting if |λ| < 1, super-attractingif λ = 0, repelling if |λ| > 1 andindifferent
(or neutral) if |λ| = 1. An indifferent cycle isrationally indifferentif λ is a root of
unity, andirrationally indifferentotherwise. A rationally indifferent cycle is called
parabolicif no iterate off is the identity map (thus∞ is a parabolic fixed point for
f(z) = z + 1 but not forf(z) = −z).

• Every repelling cycle is contained inJ(f).

• Every attracting cycle is contained inF (f). More precisely, supposez0 7→
z1 7→ · · · 7→ zp = z0 is attracting and consider itsbasin of attractionU
consisting of allz ∈ X such thatf ◦np(z) → zj for somej asn →∞. ThenU
is open andU ⊂ F (f).

• Every parabolic cycle is contained inJ(f).

Lecture 8.

We now turn to the case of the Riemann sphere. Throughout,f : Ĉ → Ĉ will denote a
rational map of degree at least2.

(1) The Julia setJ(f) is non-empty.

(2) If U ⊂ Ĉ is open andU ∩ J(f) 6= ∅, then the union
⋃

n≥0 f ◦n(U) misses at most
two points.

(3) The Julia setJ(f) is nowhere dense, or elseJ(f) = Ĉ.

(4) Thegrand orbitof a pointp ∈ Ĉ is the set

GO(p) = {z ∈ Ĉ : f ◦n(z) = f ◦m(p) for somen,m ≥ 0}.
The pointp is calledexceptionalif GO(p) is a finite set. The set of all exceptional
points off is denoted byE(f).
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As an example,∞ ∈ E(f) wheneverf is a polynomial, andE(f) = {0,∞}
wheneverf(z) = zn, n ∈ Zr{−1, 0, 1}. The next result shows that these examples
are quite general.

(5) The exceptional setE(f) has at most two points, which are super-attracting. If
E(f) 6= ∅, thenf is conformally conjugate either to a polynomial or to the map
z 7→ zn.

(6) If z ∈ J(f) andU is a small neighborhood ofz, then
⋃

n≥0 f ◦n(U) = Ĉ r E(f)
(in particular, the union does not depend onz or U ).

(7) Corollary: If z ∈ J(f), the set of iterated preimages ofz is dense inJ(f).

(8) Corollary: The Julia setJ(f) is perfect (i.e., it is compact with no isolated point).

(9) For a generic choice ofz ∈ J(f), the forward orbit ofz is dense inJ(f).

(10) EitherJ(f) is connected or it has uncountably many connected components.

Lecture 9.

(1) Let X be a hyperbolic Riemann surface andf : X → X be holomorphic. Then
J(f) = ∅. In particular,f has no repelling or parabolic cycles.

(2) Theorem: LetX be a hyperbolic Riemann surface andf : X → X be a holomor-
phic map. Then exactly one of the following must be the case:

(A) Attracting. f has a unique fixed pointq and the sequence{f ◦n} converges
locally uniformly to the constant mapX → {q}.

(E) Escape.The sequence{f ◦n} tends to infinity inX.

(F) Finite order.There exists ak ≥ 1 such thatf ◦k = idX .

(I) Irrational rotation. X is conformally isomorphic toD, D∗ or an annulus
A(1, R), andf acts as an irrational rotation on it.

Here is the structure of the proof:

• Suppose there exists a single orbit off which tends to infinity inX. Then,
using Schwarz Lemma, we show that{f ◦n}must tend to infinity inX. This is
the case (E).

• Otherwise, all orbits off are recurrent, that is, for everyp ∈ X there is a
compact setK ⊂ X and an increasing sequence of positive integersnj such
thatf ◦nj(p) ∈ K. We distinguish two cases:

•• ‖f ′(z)‖ < 1 for all z ∈ X. Then, using Schwarz Lemma, we show thatf
has an attracting fixed pointq, and all orbits converge locally uniformly
to q. This is the case (A).
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•• ‖f ′(z)‖ = 1 for all z ∈ X so thatf is a covering map. We distinguish
two further cases:

• • • π1(X) is abelian. ThenX is isomorphic toD, D∗ or someA(1, R)
andf is a rotation onX. Depending on whether this rotation is
rational or irrational, this is the case (F) or (I).

• • • π1(X) is non-abelian. Then by lifting to the universal covering,
using Montel, and observing that the normalizer of the deck group
of X must be discrete, we show that two distinct iterates off must
coincide. This is the case (F).

Lecture 10.

(1) Corollary: A holomorphic self-map of a hyperbolic Riemann surface with two or
more periodic points must be a finite order automorphism.

(2) Fatou-Sullivan’s classification of periodic Fatou components: LetU = f(U) be a
fixed Fatou component off ∈ Ratd, d ≥ 2. ThenU is

• the “immediate basin” of an attracting fixed point inU , or

• an “attracting petal” for a parabolic fixed point on∂U with multiplier λ = 1,
or

• a “Siegel disk,” or

• a “Herman ring.”

The fact that the last two cases can actually occur follows from the work of
Siegel, Arnold and Herman. In the case of an attracting petal, the proof of the
above theorem relies on the following result:

(3) Snail Lemma: Letf be a holomorphic map defined in a neighborhoodV of the fixed
point 0 = f(0). Let γ : [0, +∞[→ V r {0} be a path such thatlimt→+∞ γ(t) = 0
andf(γ(t)) = γ(t + 1) for all t ≥ 0. Then|f ′(0)| < 1 or elsef ′(0) = 1.

(4) The immediate basin of an attracting cycle of a rational map of degree≥ 2 contains
a critical point.

(5) Corollary: Letf ∈ Ratd, d ≥ 2. Thenf has at most2d− 2 attracting cycles.

In fact, suchf has at most2d− 2 non-repelling cycles. This was conjectured by
Fatou and proved by Shishikura.

Lecture 11.

(1) A mapf : X → Y between topological surfaces isproper if the preimage of every
compact set is compact. Equivalently, if{f(xn)} tends to infinity inY whenever
{xn} tends to infinity inX.
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A proper holomorphic mapf : X → Y between Riemann surfaces has a well-
defined finite mapping degree, that is, there exists an integerd ≥ 1 such that

∑

x∈f−1(y)

deg(f, x) = d for all y ∈ Y.

The integerd is often denoted bydeg(f).

(2) A mapf : X → Y between topological surfaces is abranched coveringif every
y ∈ Y has a small disk neighborhoodV such that the preimage of(V, y) is the
disjoint union of pointed disks(Ui, xi), with f : (Ui, xi) → (V, y) acting as a
power. This means there are homeomorphismsφ : (Ui, xi) → (D, 0) and ψ :
(V, y) → (D, 0) such thatψ ◦ f ◦ φ−1(z) = zk for some integerk ≥ 1. The integer
k is called thelocal degreeof f at xi and is denoted bydeg(f, xi). It is easy to
check that a branched covering has a well-defined mapping degree which may be
finite or infinite.

A non-constant holomorphic map between Riemann surfaces is proper if and
only if it is a finite degree branched covering.

(3) Corollary: A proper holomorphic map between Riemann surfaces with no critical
points is a covering map.

(4) Riemann-Hurwitz Formula: Letf : X → Y be a non-constant proper holomorphic
map between Riemann surfaces. Then

deg(f) · χ(Y )− χ(X) =
∑
x∈X

[ deg(f, x)− 1 ].

Note that the right term is a finite sum. It is the number of critical points off
counting multiplicities.

In what follows we consider examples of smooth Julia sets:

(5) A circle: If f(z) = z±d whered ≥ 2, thenJ(f) = S1 = ∂D.

(6) An interval: If f is the quadratic Chebyshev polynomialz 7→ z2 − 2, thenJ(f) =
[−2, 2]. This can be verified directly using the fact thatf−1([−2, 2]) = [−2, 2].
Alternatively, observe that the degree2 rational functionj(w) = w + w−1 (known
as theJoukowski map) semi-conjugatesf to the squaring maps(w) = w2:

j ◦ s = f ◦ j.

In other words,f is aquotientof s. Sincej maps bothD andĈ r D conformally
ontoĈr [−2, 2], it follows thatĈr [−2, 2] is the basin of infinity off andJ(f) =
[−2, 2].

The existence of the semi-conjugacyj has interesting consequences. As an ex-
ample, the normalized Lebesgue measure1

2π
dθ on S1 is an invariant ergodic mea-

sure for the action ofs, so the push-forwardµ = j∗( 1
2π

dθ) is an invariant ergodic
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measure for the action off on its Julia set[−2, 2]. Sincex = j(eiθ) = 2 cos(θ), if
[a, b] ⊂ [−2, 2], we have

j−1[a, b] = [arccos(
b

2
), arccos(

a

2
)] ∪ [− arccos(

a

2
),− arccos(

b

2
)].

It follows that

µ[a, b] = 2 · 1

2π
· (arccos(

a

2
)− arccos(

b

2
)) =

1

π

∫ b

a

dx√
4− x2

,

which gives

µ =
1

π

dx√
4− x2

.

Now, ergodicity ofµ implies that for any measurable setE ⊂ [−2, 2], the relation

lim
n→+∞

1

n
#{0 ≤ k ≤ n− 1 : f ◦k(x) ∈ E} = µ(E)

holds forµ-a.e. (hence Lebesgue a.e.)x ∈ [−2, 2]. Sinceµ is more concentrated
near the end points±2 than the middle of the interval[−2, 2], it follows that a
typical orbit in the Julia set off visits the ends of[−2, 2] much more frequent than
its middle.

(7) Euclidean circles and intervals are the only examples of1-dimensional smooth Julia
sets. According to D. H. Hamilton, if the Julia set of a rational map is a Jordan curve
(resp. arc), then either it is a Euclidean circle (resp. circular arc) or it has Hausdorff
dimension> 1.

Lecture 12.

Following Latt̀es, we now construct rational mapsf of degree≥ 2 with J(f) = Ĉ.

(1) Take the latticeΛ = Z ⊕ τZ ⊂ C generated by1 and someτ ∈ H, and consider
the torusTτ = C/Λ. Let σ be the involutionz 7→ −z onTτ . Then the quotient
X = Tτ/σ is a compact orientable topological surface and the canonical projection
π : Tτ → X is a degree2 branched covering with branch points at0, 1

2
, τ

2
, 1+τ

2
corresponding to the fixed points ofσ. It is easy to see thatX inherits a Riemann
surface structure with respect to whichπ is holomorphic. By Riemann-Hurwitz
Formula,

2 χ(X)− χ(Tτ ) = 4 =⇒ χ(X) = 2,

soX is biholomorphic to the Riemann sphereĈ. An example of such a projection
π : Tτ → Ĉ is provided by the classicalWeierstrass℘-function. This is the unique
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meromorphic function onC with poles onΛ which satisfies

℘(z + 1) = ℘(z + τ) = ℘(z)

℘(−z) = ℘(z)

℘(z) = z−2 + O(1) nearz = 0.

Explicitly,

℘(z) =
1

z2
+

∑

ω∈Λr{0}

[
1

(z + ω)2
− 1

ω2

]
.

Now consider the endomorphismg : Tτ → Tτ defined byg(z) = nz for an
integern ≥ 2. Then g is a holomorphic covering map of degreen2 which is
uniformly expands the Euclidean metric onTτ . Since all points of the form

r

np − 1
+

s

np − 1
τ (r, s ∈ Z)

are fixed underg◦p, it follows that the periodic orbits ofg are dense inTτ . Since all
these orbits are repelling, we haveJ(g) = Tτ . As g commutes with the involution
σ, it descends to a well-defined holomorphic mapf : Ĉ → Ĉ of the same degree
n2. Moreover,J(f) = Ĉ sinceπ maps the repelling cycles ofg to repelling cycles
of f . We callf constructed this way aLattès map.

(2) Thus, for an arbitrary lattice we can construct Lattès maps of degree≥ 4. For
special lattices, we can obtain Lattès maps of lower degrees. For example, takeΛ
to be the lattice of Gaussian integersZ ⊕ iZ, and defineg : Ti → Ti by g(z) =
(1 + i)z. Theng is a holomorphic expanding map of degree|1 + i|2 = 2, and a
brief inspection shows thatJ(g) = Ti. It follows that the induced mapf : Ĉ→ Ĉ
is rational of degree2 with J(f) = Ĉ.

To find an explicit formula forf , normalize the projectionπ so thatπ(0) = ∞,
π(1

2
) = 1 andπ(1+i

2
) = 0. To figure out whatπ( i

2
) is, note thatz 7→ iz is an

automorphism ofTi which fixes0 and 1+i
2

and interchanges1
2

and i
2
. It descends

to an involution ofĈ which fixes0 and∞ and interchanges1 and π( i
2
). This

involution is necessarilyw 7→ −w, soπ( i
2
) = −1. Thus

critical points ofπ : 0
1

2

i

2

1 + i

2

↓ ↓ ↓ ↓
critical value ofπ : ∞ 1 −1 0

Underg, the critical points ofπ map as

1

2
,
i

2
7→ 1 + i

2
7→ 0 7→ 0,
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so underf , the critical values ofπ map as

±1 7→ 0 7→ ∞ 7→ ∞.

It easily follows that the quadratic rational mapf must have the formf(w) =
λ(w − w−1). To determineλ, useπ ◦ g = f ◦ π and the fact thatπ(z) ∼ z−2 near
z = 0 to obtain

1

(1 + i)2z2
∼ λ

z2
nearz = 0.

Thusλ = 1
2i

andf(w) = 1
2i

(w−w−1). Note in particular that the critical values of
π are precisely thepostcriticalpoints off (a fact that could have also been checked
usingπ ◦ g = f ◦ π).

(3) The endomorphismg(z) = (1+ i)z of the torusTi has an obvious invariant ergodic
measure, namely the Lebesgue area form|dz|2. It follows that the push-forward
µ = π∗(|dz|2) is an invariant ergodic measure for the Lattès mapf(w) = 1

2i
(w −

w−1). To find the explicit formula for this measure, note that the elliptic function
w = π(z) satisfies the differential equation

(
dw

dz

)2

= 4w3 − g2w − g3,

where the constantsg2, g3 are determined by the fact that0,±1 are the finite critical
values ofw. Thus

(
dw

dz

)2

= 4w(w − 1)(w + 1),

so

|dz|2 =
|dw|2

4|w| |w − 1| |w + 1| .
Since the mapπ has degree2, it follows that

µ =
|dw|2

2 |w| |w − 1| |w + 1| .

Note thatµ is a smooth measure except at the four critical values ofπ which are
the postcritical points off . Ergodicity ofµ shows that a typical orbit off visits
neighborhoods of these four points much more frequently than neighborhoods of
the same spherical size of other points on the sphere. Thus, such a typical orbit
appears to be highly concentrated near the four postcritical points.

Lecture 13.

(1) Rational maps of degree two or more exhibit both expanding and contracting be-
haviors. Letf ∈ Ratd with d ≥ 2. Thenf ◦n has2dn − 2 critical points near which
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the spherical metricσ = 2|dz|/(1 + |z|2) is highly contracted. On the other hand,
if ‖f ′(z)‖σ = σ(f(z))|f ′(z)|/σ(z) is the spherical norm of the derivative, we have∫

bC(f ◦n)∗σ2 =

∫
bC ‖(f ◦n)′‖2

σ σ2 = dn

∫
bC σ2 = 4πdn,

which shows on average‖(f ◦n)′‖σ grows exponentially fast.

(2) Givenf ∈ Ratd with d ≥ 2, let C(f) denote the set of critical points off . Define
thepostcritical setP (f) as

P (f) =
⋃

c∈C(f)

{f(c), f ◦2(c), f ◦3(c), . . .}.

Here are some basic properties:

• P (f) is non-empty and compact.
• f(P (f)) ⊂ P (f).
• P (f) = P (f ◦k) for everyk ≥ 1.
• P (f) is the smallest compact subset ofĈ which contains all the critical values

of f ◦n for all n ≥ 1.

The last property shows that on every topological disk disjoint fromP (f), all the
dn inverse branches off ◦n are single-valued holomorphic functions.

(3) Supposef ∈ Ratd with d ≥ 2, and#P (f) ≤ 2. Thenf is conjugate to the map
z 7→ zd or z 7→ z−d (in particular#P (f) = 2).

(4) Let f ∈ Ratd with d ≥ 2, and#P (f) ≥ 3. Let ρ denote the hyperbolic metric on
(each component of) the complementĈrP (f). If bothz andf(z) are inĈrP (f),
then‖f ′(z)‖ρ ≥ 1.

(5) Let f ∈ Ratd with d ≥ 2, and#P (f) ≥ 3. Defineρ as above, and assume that the
forward orbit ofz ∈ J(f) never hitsP (f). Then‖(f ◦n)′(z)‖ρ →∞ asn →∞.

(6) Corollary: Letf ∈ Ratd with d ≥ 2. ThenP (f) contains the attracting, parabolic,
and Cremer cycles, as well as the boundaries of Siegel disks and Herman rings of
f .

Lecture 14.
Throughout we assumef ∈ Ratd with d ≥ 2.

(1) f is expanding(on its Julia set) if there exists a conformal metricρ = ρ(z)|dz|
defined in a neighborhood ofJ(f) and someλ > 1 such that

‖f ′(z)‖ρ > λ for all z ∈ J(f).

(2) Theorem: The following conditions are equivalent:

(i) f is expanding.
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(ii) For anyconformal metricρ defined near the Julia set, there existC > 0 and
λ > 1 such that‖(f ◦n)′(z)‖ρ > Cλn for all n ≥ 1 and allz ∈ J(f).

(iii) Some finite iteratef ◦k expands the spherical metricσ on the Julia set, i.e.,
there existsλ > 1 such that‖(f ◦k)′(z)‖σ > λ for all z ∈ J(f).

(iv) There are no critical points off in J(f) and all orbits inF (f) tend to attracting
cycles.

(v) The orbit of every critical point off tends to an attracting cycle.
(vi) P (f) ∩ J(f) = ∅.

(3) Corollary: An expanding map has no indifferent cycles or Herman rings.

(4) Corollary: A quadratic polynomial with an attracting cycle in the plane is expand-
ing.

(5) A central conjecture in holomorphic dynamics is that expanding rational (resp.
polynomial) maps of degreed ≥ 2 are dense in Ratd (resp. Pold). This would fol-
low from the conjecture that structurally stable rational maps are expanding, since
the former class is known to be dense by the work of Mañe-Sad-Sullivan.

Lecture 15.
(1) Classical form of K̈oebe Distortion Theorem: Letf : D → C be univalent, with

f ′(0) = 1. Then
1− r

(1 + r)3
≤ |f ′(z)| ≤ 1 + r

(1− r)3
if |z| ≤ r < 1.

It follows that if f : D(p, ε) → C is univalent andr < 1, then thedistortionof f
on the smaller diskD(p, rε) defined by

sup

{ |f ′(z)|
|f ′(w)| : z, w ∈ D(p, rε)

}

is bounded by a constantC(r) > 0 independent off . Thus,f distorts arc-lengths
and areas inD(p, rε) by a factor which only depends onr.

(2) Invariant form of K̈oebe Distortion Theorem: LetU ( C be a simply-connected
domain,K ⊂ U be compact, andd be the hyperbolic diameter ofK in U . Then,
for every univalent functionf : U → C,

sup

{ |f ′(z)|
|f ′(w)| : z, w ∈ K

}
≤ e4d.

(3) Lebesgue Density Theorem: LetE ⊂ C be measurable. Then

lim
r→0

area(D(p, r) ∩ E)

area(D(p, r))
= χE(p) for almost everyp ∈ Ĉ.

In particular, ifarea(E) > 0, then almost everyp ∈ E is a density point, i.e., it
satisfieslimr→0 area(D(p, r) ∩ E)/ area(D(p, r)) = 1.
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(4) In the definition of density points, we can replace round disks by other kinds of
neighborhoods. For example, a topological diskD is calledα-round if

area(D) ≥ α diam(D)2.

If p is a density point ofE and{Dk} is a sequence ofα-round neighborhoods ofp
with rk = diam(Dk) → 0, then

area(Dk ∩ E)

area(Dk)
= 1− area(Dk r E)

area(Dk)

≥ 1− area(D(p, rk))

area(Dk)
· area(D(p, rk)r E)

area(D(p, rk))

≥ 1− πr2
k

αr2
k

· area(D(p, rk)r E)

area(D(p, rk))

= 1− π

α
· area(D(p, rk)r E)

area(D(p, rk))
.

Sincearea(D(p, rk)r E)/ area(D(p, rk)) → 0 ask →∞, it follows that

lim
k→∞

area(Dk ∩ E)

area(Dk)
= 1.

(5) A rational mapf is said to beergodic(with respect to the Lebesgue measure class
on the sphere) if for every measurable setE ⊂ Ĉ which satisfiesE = f−1(E) it is
true thatarea(E) = 0 or area(Ĉ r E) = 0.

It is not hard to show thatJ(f) = Ĉ wheneverf is ergodic.

(6) “Ergodic or Attracting” Theorem: Supposef ∈ Ratd with d ≥ 2. Then

• f is ergodic and henceJ(f) = Ĉ, or

• limn→∞ distσ(f ◦n(z), P (f)) = 0 for almost everyz ∈ J(f).

The two possibilities arenot mutually exclusive: According to M. Rees, there are
ergodic rational maps withP (f) = J(f) = Ĉ.

(7) Corollary: Iff is expanding, thenarea(J(f)) = 0.

A more careful analysis of the proof shows that in factdimH(J(f)) < 2.

Lecture 16.

(1) Let X be a smooth orientable surface. Aconformal structureon X is an equiva-
lence class of smooth Riemannian metrics, where the metricsg, g′ are considered
equivalent ifg′ = η g for some positive functionη : X → R. The equivalence class
(also called theconformal class) of g is denoted by[g].
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It follows from the definition that each conformal structure gives rise to a well-
defined notion of “angle” between tangent vectors.

(2) Now assume in addition thatX has a complex structure. ThenX carries a canon-
ical conformal structure whose representative metrics have the local formg(z) =
γ(z) |dz| in each holomorphic local coordinatez on X. This is well-defined since
if ζ is another local coordinate near the same point andζ 7→ z(ζ) is the change of
coordinates, then

g(ζ) = γ(z(ζ)) |z′(ζ)| |dζ|
which is a multiple of|dζ|. We call this conformal structure thestandard conformal
structure ofX (with respect to the given complex structure) and denote it byσX .

(3) On a Riemann surface, it is often easier to do local computations in complex-
variable notations. LetX be a Riemann surface andz = x + iy be a holomorphic
local coordinate onX. Then(x, y) can be thought of as coordinates for the under-
lying smooth surface. In these coordinates, a Riemannian metricg has the local
form

E dx2 + 2F dx dy + Gdy2,

whereE, F, G are smooth functions of(x, y) satisfyingE > 0, G > 0 andEG −
F 2 > 0. The associated inner product on each tangent space is given by〈

a
∂

∂x
+ b

∂

∂y
, c

∂

∂x
+ d

∂

∂y

〉
= Eac + F (ad + bc) + Gbd

= [a b] L

[
c
d

]

where

L =

[
E F
F G

]

is the matrix ofg in the basis{ ∂
∂x

, ∂
∂y
}. In particular,

∥∥∥∥a
∂

∂x
+ b

∂

∂y

∥∥∥∥
2

= Ea2 + 2Fab + Gb2.

Define two local sections of the complexified cotangent bundleT ∗X ⊗ C by

dz = dx + i dy

dz = dx− i dy

which form a basis for each complexified cotangent space. The local sections

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)



21

of the complexified tangent bundleTX ⊗ C will form the dual basis at each point.
The inner productg extends uniquely to a Hermitian product onTX ⊗ C. The
matrix of this Hermitian product in the basis{ ∂

∂z
, ∂

∂z
} is given byL′ = D∗ LD,

where

D =
1

2

[
1 1

i −i

]
.

It follows that

L′ =
1

4

[
E + G E −G− 2iF

E −G + 2iF E + G

]
.

Let us introduce the quantities

γ2 =
1

4
(E + G +

√
EG− F 2)

µ =
1

4γ2
(E −G + 2iF ) =

E −G + 2iF

E + G +
√

EG− F 2
.

Note that

γ2 > 0 and |µ|2 =
E + G− 2

√
EG− F 2

E + G + 2
√

EG− F 2
< 1.

Substituting these intoL′ gives

L′ = γ2




1 + |µ|2
2

µ

µ
1 + |µ|2

2


 .

Since the Hermitian product onT ∗X ⊗ C is given by〈
α

∂

∂z
+ β

∂

∂z
, ω

∂

∂z
+ ν

∂

∂z

〉
= [α β] L′

[
ω
ν

]
,

it follows that∥∥∥∥α
∂

∂z
+ β

∂

∂z

∥∥∥∥
2

= γ2

(
1 + |µ|2

2
(|α|2 + |β|2) + µ α β + µα β

)
.

But real tangent vectors have the special formα ∂
∂z

+ α ∂
∂z

, sincea ∂
∂x

+ b ∂
∂y

=

(a + ib) ∂
∂z

+ (a− ib) ∂
∂z

. For such vectors, the above formula reduces to
∥∥∥∥α

∂

∂z
+ α

∂

∂z

∥∥∥∥
2

= γ2|α + µ α|2.

The last expression suggests that as long as we care about lengths of real tangent
vectors, the Hermitian metricg in the complex basis{ ∂

∂z
, ∂

∂z
} can be represented as

g = γ(z) |dz + µ(z) dz|,
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with γ andµ defined as above.

(4) Let us see how the quantitiesγ andµ associated with a metricg transform under a
holomorphic change of coordinatesz 7→ w onX:

γ(z) |dz + µ(z) dz| = w∗(γ(w) |dw + µ(w) dw|)
= γ(w(z)) |w′(z) dz + µ(w(z))w′(z) dz|

= γ(w(z)) |w′(z)|
∣∣∣∣∣dz + µ(w(z))

w′(z)

w′(z)
dz

∣∣∣∣∣ ,

from which we obtain

γ(z) = γ(w(z)) |w′(z)|

µ(z) = µ(w(z))
w′(z)

w′(z)

or simply

γ(z) |dz| = γ(w) |dw|

µ(z)
dz

dz
= µ(w)

dw

dw
.

It follows that γ(z) |dz| is a well-defined(1, 1)-differential, namely a conformal
metric, onX. Similarly, µ(z) dz

dz
is a well-defined(−1, 1)-differential onX. We

call µ = µ(z) dz
dz

theBeltrami differentialassociated withg. Note thatµ depends
only on the conformal class[g]. Note also thatz 7→ |µ(z)| is a well-defined function
onX.

(5) Corollary: There is a one-to-one correspondence between conformal structures on a
Riemann surfaceX and Beltrami differentialsµ = µ(z) dz

dz
which satisfy|µ(z)| < 1

in every local coordinatez onX. The standard conformal structureσX corresponds
to the zero Beltrami differential.

(6) Here is the geometric interpretation of a Beltrami differential associated with a
conformal structure[g]: Fix a local coordinatez = x + iy ∼= (x, y) near a point
p ∈ X. Consider the family of “circles”E(p) = {v ∈ TpX : ‖v‖ = const.} which
depends only on[g]. If v = a ∂

∂x
+ b ∂

∂y
= (a+ ib) ∂

∂z
+(a− ib) ∂

∂z
, then the “circles”

‖v‖ = const. correspond to the loci|(a+ib)+µ(a−ib)| = const. in the real(a, b)-
plane. Settingµ = reiθ andζ = (a + ib)e−i θ

2 , we obtain the loci|ζ + rζ| = const.
in theζ-plane, which is the family of concentric ellipses with the minor axis along
the real direction and the major axis along the imaginary direction, and with the
ratio of the major to minor axis equal to1+r

1−r
. Transferring this family back to the
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(a, b)-plane, it follows thatE(p) is a family of concentric ellipses inTpX with

1

2
arg µ = angle of elevation of the minor axis

1 + |µ|
1− |µ| = ratio of the major to minor axis

Lecture 17.
All surfaces are to be smooth, oriented, connected and without boundary. All diffeomor-

phisms are assumed orientation-preserving.

(1) LetX andY be surfaces andϕ : X → Y be a diffeomorphism. Given a conformal
structureσ = [g] on Y , thepull-backϕ∗σ is defined as[ϕ∗g]. It is easy to check
that the definition is independent of the representativeg of σ.

Now assumeX andY are Riemann surfaces. Expressϕ locally asw = w(z),
wherez andw are local coordinates onX andY , and letσ = [ |dw + µ(w) dw| ].
Then

ϕ∗σ = [ |wz dz + wz dz + µ(w(z)) (wz dz + wz dz)| ]
= [ |(wz + µ(w(z)) wz) dz + (wz + µ(w(z)) wz) dz| ]

=

[ ∣∣∣∣dz +
wz + µ(w(z)) wz

wz + µ(w(z)) wz

dz

∣∣∣∣
]

,

where we have used the fact that

wz = wz and wz = wz.

This shows in particular thatϕ : X → Y is a biholomorphism if and only ifϕ∗σY =
σX . It also suggests the following pull-back operation on Beltrami differentials:

ϕ∗
(

µ(w)
dw

dw

)
=

wz + µ(w(z)) wz

wz + µ(w(z)) wz

dz

dz
=

wz

wz

µ(w(z)) + wz

wz

1 + wz

wz
µ(w(z))

dz

dz
.

Thus, at the level of Beltrami coefficients, the pull-back operator acts fiberwise as

ϕ∗(µ) = λ

(
µ + α

1 + α µ

)
whereλ =

wz

wz

and α =
wz

wz

.

Note that|λ| = 1 and |α| < 1, where the latter holds sinceϕ is orientation-
preserving and hence has positive Jacobian|wz|2 − |wz|2. It follows that the pull-
back operator acts on Beltrami coefficients fiberwise by an automorphism of the
unit disk. Note that whenϕ is a biholomorphism,α = 0 and the automorphism
reduces to the (linear) rotationµ 7→ λµ.

(2) The Integrability Question: “Given a conformal structureσ on a surfaceX, does
there exist a complex structure onX with respect to whichσX = σ?” If such com-
plex structure exists, we say that it iscompatiblewith σ and we callσ integrable.
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An equivalent question is whether there is a Riemann surfaceY and a diffeomor-
phismϕ : X → Y such thatϕ∗σY = σ. Any suchϕ is said torectifyσ. To see the
equivalence, note that ifϕ : X → Y rectifiesσ, it pulls back the complex structure
of Y to one onX which is compatible withσ. Conversely, if there is a complex
structure onX compatible withσ, then the map id: X → X rectifiesσ.

Supposeϕ : X → Y andψ : X → Z both rectifyσ. Then(ψ ◦ ϕ−1)∗σZ = σY ,
which meansψ ◦ ϕ−1 : Y → Z is a biholomorphism. It follows that the map
which rectifies a given conformal structure is unique up to post-composition with a
biholomorphism.

(3) A local condition for integrability: Supposeσ = [ |dz + µ(z) dz| ] is a conformal
structure on a Riemann surfaceX. Then, by the above computation for pull-backs,
the conditionϕ∗σY = σ translates into

wz

wz

= µ(z),

which is called theBeltrami equation. Any (diffeomorphic) solution of this equa-
tion is called aµ-conformalmap. Note that whenµ = 0 it reduces to the classical
Cauchy-Riemann equationwz = 0.

(4) Theorem (Guass): Supposeµ is a smooth complex-valued function defined inD
which satisfies|µ(z)| < 1 at everyz ∈ D. Then there exists aµ-conformal diffeo-

morphismϕ : D
∼=−→ ϕ(D) ⊂ C.

Note that eitherϕ(D) = C or ϕ(D) is biholomorphic toD by the Riemann
Mapping Theorem. Thus, in the above theorem we can findµ-conformal solutions
D→ D orD→ C.

(5) Corollary: LetX be a surface with a Riemannian metricg. Then around each
point of X we can findisothermal coordinates(x, y) in which g has the form
γ(x, y)

√
dx2 + dy2.

(6) Corollary: Every smooth conformal structure on a surface is integrable. In partic-
ular, every (oriented, connected, boundary-less) surface admits the structure of a
Riemann surface.

(7) Corollary (Differential-Geometric Uniformization Theorem): Every simply-connected
surface with a Riemannian metric is conformally diffeomorphic toD, R2 or S2.

Here “conformal” should be understood as “angle-preserving.”

(8) Problem: Letg be a smooth Riemannian metric onD. Decide whether(D, g) is
conformally diffeomorphic toD orR2.

The answer is available in certain cases. For example, ifg = |dz + µ(z) dz|
and‖µ‖∞ < 1, then(D, g) ∼= D is always the case (this will be a corollary of
the Measurable Riemann Mapping Theorem). As another example, supposeg is
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rotationally symmetric so that|µ| depends only onr = |z|. Then(D, g) ∼= D orR2

according as

lim
a→1−

∫ a

1
2

1 + |µ|
1− |µ|

dr

r

is finite or infinite.

(9) Example: Letg = |dz + k dz| where0 ≤ k < 1. Then(D, g) ∼= D. In fact, the
affine mapw = z + kz sendingD to the ellipse

E =

{
(x, y) ∈ R2 :

x2

(1 + k)2
+

y2

(1− k)2
< 1

}

satisfies the Beltrami equationwz = k wz. Post-composingw with a biholomor-
phismE → D given by the Riemann Mapping Theorem, we obtain a conformal
diffeomorphism from(D, g) toD.

(10) Example: Ifg = |dz + z2 dz|, then(D, g) ∼= C. In fact,w = z
1−|z|2 is a conformal

diffeomorphism from(D, g) toC since

wz

wz

=

z2

(1− |z|2)2

1

(1− |z|2)2

= z2.

Lecture 18.
(1) A conformal structure[ |dz + µ(z) dz| ] on a Riemann surface, or its associated

Beltrami differentialµ(z)dz
dz

, is said to havebounded dilatationif

‖µ‖∞ = sup
z∈X

|µ(z)| < 1.

(2) An orientation-preserving diffeomorphismf : X → Y between Riemann surfaces
is calledquasiconformalif f ∗σY has bounded dilatation. Locally, this means there
exists a0 ≤ k < 1 such that

sup
z∈X

∣∣∣∣
fz

fz

∣∣∣∣ < k.

In this case, we say thatf is K-quasiconformal, where1 ≤ K = 1+k
1−k

< +∞.
Thus, a1-quasiconformal diffeomorphism is holomorphic.

(3) In many applications, one is bound to consider conformal structures on Riemann
surfaces which are only measurable. The integrability question for such conformal
structures still makes sense, but maps which would rectify such structures can no
longer be smooth. Easy examples show that measurable conformal structures are
not generally integrable. However, with the extra assumption of having bounded di-
latation, they are integrable and the maps which rectify them are homeomorphisms
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which enjoy some degree of regularity. This leads to the idea of considering quasi-
conformal homeomorphisms between Riemann surfaces.

(4) LetU, V be open sets inC. An orientation-preserving homeomorphismf : U → V
is calledK-quasiconformalif
(i) f is absolutely continuous on lines (ACL). This means that the restriction off

to almost every horizontal and vertical segment inU is absolutely continuous.

(ii) |fz| ≤ k|fz| almost everywhere inU , wherek = K−1
K+1

.

The quantityµf = fz

fz
is called thecomplex dilatationof f .

(5) Here are some properties of quasiconformal homeomorphisms:

• If f : U → V is quasiconformal, thenf is differentiable almost everywhere in
U , that is, for almost everyp ∈ U ,

f(p + z) = f(p) + zfz(p) + zfz(p) + ε(z),

whereε(z)
z
→ 0 asz → 0.

• If f = u + iv : U → V is quasiconformal, the Jacobian

Jf = uxvy − uyvx = |fz|2 − |fz|2

is locally integrable inU , and we have
∫

E

Jf dx dy = area(f(E))

for every compact setE ⊂ U . In particular,f maps sets of area zero to sets of
area zero.

• The partial derivativesfz andfz of a quasiconformal mapf : U → V are
locally square-integrable inU . In fact, if f if K-quasiconformal andk = K−1

K+1
,

then

|fz|2 ≤ 1

1− k2
Jf and |fz|2 ≤ k2

1− k2
Jf .

• The partial derivativesfz andfz of a quasiconformal mapf : U → V are the
distributional derivatives also, that is,

∫

U

fz ϕ = −
∫

U

f ϕz and
∫

U

fz ϕ = −
∫

U

f ϕz

for every compactly supported smooth test functionϕ : U → C.

• The standard Chain-Rule formulas hold for the composition of quasiconformal
maps: Ifw = f(z) andζ = g(w) are quasiconformal, so isζ = (g ◦ f)(z),
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and the relations

ζz = ζw wz + ζw wz

ζz = ζw wz + ζw wz

hold almost everywhere. Dividing, we obtain

µg◦f =
ζw wz + ζw wz

ζw wz + ζw wz

=
wz + (µg ◦ f) wz

wz + (µg ◦ f) wz

=
µf + (µg ◦ f) (wz

wz
)

1 + (µg ◦ f) (wz

wz
) µf

.

It follows that

µg◦f = T

(
(µg ◦ f) (

wz

wz

)

)
where s

T7→ s + µf

1 + µfs
∈ Aut(D)

• If f is K-quasiconformal, so isf−1.

• If f is K1-quasiconformal andg is K2-quasiconformal, the compositiong ◦ f
is K1K2-quasiconformal.

• Weyl’s Lemma: A1-quasiconformal homeomorphism is holomorphic.

• If f : U → V is K-quasiconformal, then

K−1 mod(A) ≤ mod(f(A)) ≤ K mod(A)

for every annulusA ⊂ U . According to Ahlfors, this property is equivalent to
beingK-quasiconformal.

(6) Example: LetK ≥ 1 and definef : C→ C by

f(x + iy) =

{
x + iKy if y ≥ 0

x + iy if y < 0.

Thenf is an ACL homeomorphism with

fz(x + iy) =

{
1+K

2
if y ≥ 0

1 if y < 0
fz(x + iy) =

{
1−K

2
if y ≥ 0

0 if y < 0

so that|fz

fz
| ≤ K−1

K+1
. It follows thatf is K-quasiconformal.

(7) Example: Let0 ≤ k < 1 and definef : C→ C by

f(z) =

{
z + kz if |z| ≤ 1

z + k
z

if |z| > 1.

Thenf is an ACL homeomorphism with

fz(z) =

{
1 if |z| ≤ 1

1− k
z2 if |z| > 1

fz(z) =

{
k if |z| ≤ 1

0 if |z| > 1
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so that|fz

fz
| ≤ k. It follows thatf is K-quasiconformal, withK = 1+k

1−k
.

(8) Example: Letξ : [0, 1] → [0, 1] be continuous and non-decreasing,ξ(0) = 0,
ξ(1) = 1, and ξ′(x) = 0 almost everywhere (such a function is often called a
devil’s staircase). Extendξ to a mapR → R by settingξ(x + n) = ξ(x) + n for
n ∈ Z. Definef : C→ C by

f(x + iy) = x + i(y + ξ(x)).

Thenf is a homeomorphism which satisfiesfz = 0 almost everywhere inC. How-
ever,f is not holomorphic. This does not contradict Weyl’s Lemma sincef is not
ACL, hence not quasiconformal.

(9) Example: The unit diskD and the complex planeC are not quasiconformally home-
omorphic: If there were a quasiconformal homeomorphismf : D → C, then
A = f({z : 1

2
< |z| < 1}) would be an annulus of finite modulus. ButA contains

the punctured disk{z : |z| > r} for all larger, whose modulus is infinite.

Lecture 19.

(1) A homeomorphismf : X → Y between Riemann surfaces isK-quasiconformal if
w ◦ f ◦ z−1 is K-quasiconformal for each pair of local coordinatesz on X andw
onY for which this composition makes sense.

(2) Much of the notions we discussed above for diffeomorphisms, and the local com-
putations, remain valid for quasiconformal maps, as they are differentiable almost
everywhere. Thus, we can talk about measurable Riemannian metrics and confor-
mal structures on surfaces, measurable Beltrami differentials on Riemann surfaces,
and the pull-back of a conformal structure or Beltrami differential under a qua-
siconformal homeomorphism. In particular, ifϕ : X → Y is a quasiconformal
homeomorphism andσ = [ |dz + µ(z) dz| ] a conformal structure onX, then

ϕ rectifiesσ ⇐⇒ ϕ∗σY = σ ⇐⇒ µϕ =
ϕz

ϕz

dz

dz
= µ a.e.

(3) Theorem (Local solutions of the Beltrami equation): Letµ be a measurable complex-
valued function on the unit diskD with ‖µ‖∞ < 1. Then there exists a quasicon-
formal homeomorphismϕ : D → D which satisfiesϕz

ϕz
= µ almost everywhere.

(4) The Measurable Riemann Mapping Theorem (MRMT): Letµ be a measurable Bel-
trami differential on a Riemann surfaceX which has bounded dilatation. Then there
exists a Riemann surfaceY and a quasiconformal homeomorphismϕ : X → Y
such thatµϕ = µ almost everywhere. Ifψ : X → Z is another such homeomor-
phism, the mapψ ◦ ϕ−1 : Y → Z is biholomorphic.
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(5) MRMT with parameters for̂C: Let µ be a measurable Beltrami differential on
the Riemann spherêC which has bounded dilatation. Then there exists a unique
quasiconformal homeomorphismϕµ : Ĉ → Ĉ such thatϕµ(0) = 0, ϕµ(1) = 1,
ϕµ(∞) = ∞, andµϕµ = µ almost everywhere. Moreover, ifµ depends contin-
uously, smoothly, or analytically on a parameter, so does the normalized solution
ϕµ.

(6) A deformation retraction QC(Ĉ) → Aut(Ĉ): Let ϕ : Ĉ → Ĉ be a quasiconformal
homeomorphism andΦ ∈ Aut(Ĉ) be uniquely determined by the conditionΦ = ϕ
on the set{0, 1,∞}. Defineµt = t µϕ for t ∈ [0, 1]. Let ϕt = Φ ◦ ϕµt, whereϕµt

is the normalized solution of the Beltrami equation given by MRMT. Thent 7→ ϕt

is continuous and by uniqueness of the solutions,ϕ1 = ϕ andϕ0 = Φ.

(7) Let f and g be rational maps andϕ : Ĉ → Ĉ be a quasiconformal conjugacy
between them so thatϕ ◦ f = g ◦ϕ. The fact thatg is holomorphic implies that the
Beltrami differentialµϕ is f -invariant, that isf ∗µϕ = µϕ. Conversely, supposeµ
is anf -invariant Beltrami differential with‖µ‖∞ < 1. Then the branched covering
g = ϕµ ◦ f ◦ (ϕµ)−1 is a rational map since it is locally1-quasiconformal away
from the branch points.

Thus, there is a correspondence betweenf -invariant Beltrami differentials of
bounded dilatation and rational maps which are quasiconformally conjugate tof
(the correspondence need not be one-to-one).

(8) As a basic dynamical application of the preceding remark, let us show that the qua-
siconformal conjugacy class of a rational mapf is always path-connected. Suppose
ϕ is a quasiconformal conjugacy betweenf and another rational mapg. Consider
the familyµt = tµϕ of Beltrami differentials as above and note that

f ∗µt = f ∗(tµϕ) = tf ∗µϕ = tµϕ = µt,

where we have used the fact that the pull-back operatorf ∗ acts as a rotation about
the origin and hence is linear. Ifϕt = Φ ◦ ϕµt as before, it follows that the path
t 7→ gt = ϕt ◦ f ◦ (ϕt)

−1 consists of rational maps quasiconformally conjugate to
f connectingg0 = Φ ◦ f ◦ Φ−1 to g1 = g. Joining this path tot 7→ Φt ◦ f ◦ Φ−1

t

in which t 7→ Φt is a path in Aut(Ĉ) connecting id toΦ, we obtain the desired path
from f to g.

Lecture 20.
Here are 3 elementary applications of MRMT in holomorphic dynamics.

(1) Invariance of multipliers: Letf(z) = λz + O(z2) be the germ of a holomorphic
map in the plane fixing the origin. The multiplierλ = f ′(0) is clearly invariant
under smooth conjugacies. On the other hand,z 7→ 2z is topologically (even qua-
siconformally) conjugate toz 7→ 3z.
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A remarkable theorem of Naishul asserts that when the origin is an indifferent
fixed point, the multiplierλ is invariant under topological conjugacies. Here we
prove a weaker version of this result by using MRMT.

Theorem: Letf(z) = λz + O(z2) andg(z) = νz + O(z2) be quasiconformally
conjugate near0. If |λ| = 1, thenλ = ν.

Proof. Letϕ be a quasiconformal homeomorphism defined near0 which satisfies
ϕ(0) = 0 andϕ ◦ f = g ◦ ϕ. Consider the Beltrami differentialµ = µϕ defined
near the origin, which is clearlyf -invariant. Letδ, ε > 0 be sufficiently small and
define, fort ∈ D(0, 1 + ε), the Beltrami differentials

µt(z) =

{
t µ(z) if |z| < δ

0 otherwise

Sincef ∗µ = µ andf ∗ is linear, it follows thatf ∗µt = µt near0. Let ϕt = ϕµt :

Ĉ → Ĉ be the normalized solution of the Beltrami equation given by MRMT.
Thengt = ϕt ◦ f ◦ ϕ−1

t is a 1-quasiconformal homeomorphism near the origin,
hence holomorphic there. Moreover,t 7→ gt(z) is holomorphic for each fixedz
sufficiently close to0. Writing gt(z) = λt z + O(z2), it follows that t 7→ λt is
holomorphic. Butgt is conjugate tof whose fixed point atz = 0 is indifferent,
so |λt| = 1 for all t ∈ D(0, 1 + ε), implying t 7→ λt is constant. Nowϕ0 = id
sog0 = f soλ0 = λ. Similarly, ϕ1 ◦ ϕ−1 is conformal, sog1 is holomorphically
conjugate tog, soλ1 = ν. We conclude thatλ = ν.

(2) Linearization of hyperbolic germs: A holomorphic germf(z) = λz + O(z2) is
calledhyperbolicif |λ| 6= 0, 1. A classical theorem of Koenigs asserts that every
hyperbolic germ is holomorphically linearizable. The classical proof, for|λ| < 1,
consists of showing that the sequence{λ−nf ◦n(z)}n≥1 converges uniformly in a
neighborhood of the origin to a holomorphic mapΦ. It is then clear thatΦ′(0) = 1
andΦ(f(z)) = λΦ(z). Here we give a proof of this result by applying MRMT.

Theorem (Koenigs): Iff(z) = λz + O(z2) is a hyperbolic germ, there exists a
holomorphic change of coordinatez 7→ Φ(z) defined near the origin, withΦ(0) =
0, such thatΦ(f(z)) = λΦ(z).

Proof. Without losing generality, assume|λ| < 1 (otherwise consider the local
inverse off ). Choose a diskU = D(0, ε) small enough so thatf(U) is compactly
contained inU . It then follows by an induction thatf ◦n(U) is compactly contained
in f ◦n−1(U) for all n ≥ 1, and thatf ◦n(z) → 0 for everyz ∈ U . Let L denote
the linear contractionz 7→ 1

2
z. Take a smooth diffeomorphismψ : A = {z ∈

C : 1
2
≤ |z| ≤ 1} → U r f(U) subject only to the conditionψ(L(z)) = f(ψ(z))

whenever|z| = 1. Extendψ to a homeomorphismD→ U by definingψ(L◦n(z)) =
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f ◦n(ψ(z)) for all n ≥ 1 and allz ∈ A. Thenψ is quasiconformal and satisfies

ψ(L(z)) = f(ψ(z)) for all z ∈ D.

Now consider the Beltrami differentialµ = µψ onD. Extendµ to the entire plane
by taking pull-backs underL. The resulting Beltrami differential (still denote by
µ) is easily seen to beL-invariant and with bounded dilatation. Ifϕ = ϕµ is the
normalized solution of the Beltrami equation given by MRMT, it follows that the
conjugate homeomorphismg = ϕ ◦ L ◦ ϕ−1 : C → C is holomorphic. Since
g(0) = 0, we must haveg(z) = νz for someν ∈ C∗.

SetΦ = ϕ ◦ ψ−1. ThenΦ is a1-quasiconformal homeomorphism defined in a
neighborhood of the fixed point0. By Weyl’s Lemma,Φ is holomorphic. Moreover,
Φ conjugatesf to g near0, soν = g′(0) = f ′(0) = λ.

(3) Construction of Herman rings by surgery: Supposef is a rational map of degree
d ≥ 2 with a fixed Siegel disk∆ of rotation numberθ. Take another rational map
g of degreed′ ≥ 2 with a fixed Siegel disk∆′ of rotation number−θ. Following
Shishikura, we will construct a rational mapF , of degreed+d′−1, with a Herman
ring of rotation numberθ. The idea is to cut out invariant disks from∆ and∆′ and
paste the resulting sphere-with-holes along the boundary to obtain a sphere. There
is an obvious action on this sphere coming from the action off andg on the pieces.
We apply MRMT to realize this action as a rational map.

More precisely, letφ : ∆
∼=−→ D(0, 2) andψ : ∆′ ∼=−→ D(0, 2) be conformal

isomorphisms which satisfy

φ(f(z)) = e2πiθφ(z) and ψ(g(z)) = e−2πiθψ(z).

Let

γ = {z ∈ ∆ : |φ(z)| = 1} and γ′ = {z ∈ ∆′ : |ψ(z)| = 1}.
The mappingh : γ → γ′ defined byh(z) = ψ−1(φ(z)) is a smooth orientation-
reversing diffeomorphism which satisfiesh(f(z)) = g(h(z)) for all z ∈ γ. Extend
h to a quasiconformal homeomorphismh : Ĉ→ Ĉ with the following properties:

• h maps int(γ) to ext(γ′) and ext(γ) to int(γ′). (Here “int” refers to the comple-
mentary component of the Jordan curve which contains the center of the Siegel
disk and “ext” refers to the other component.)

• h is conformal in a neighborhood of̂Cr (∆ ∩ h−1(∆′)).

Define

F̃ (z) =

{
f(z) if z ∈ γ ∪ ext(γ)

(h−1 ◦ g ◦ h)(z) if z ∈ int(γ)

It is easy to check that̃F is a degreed+d′−1 branched covering of the sphere which
is locally quasiconformal away from its branch points. Moreover,A = ∆∩h−1(∆′)
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is a “topological Herman ring” of rotation numberθ for F̃ , andF is holomorphic
in a neighborhood of̂Cr F−1(A).

To conjugatẽF to a rational map, define a Beltrami differentialµ onĈ as follows.
First defineµ onA by

µ =

{
µ0 onA ∩ ext(γ)

h∗µ0 onA ∩ int(γ)

(whereµ0 is the zero Beltrami differential corresponding to the standard conformal
structure of the sphere). Clearly,̃F : A → A preservesµ. Extendµ to the union⋃

n≥1 F̃−n(A) by pulling back via the appropriate iterate of̃F . Note that only

the first pull-back toF̃−1(A) r A can possibly increase the dilatation ofµ; all
further pull-backs are taken by iterates ofF̃ which are holomorphic and so do not
change the dilatation. On the complement of this union, setµ = µ0. The Beltrami
differentialµ defined this way is clearlỹF -invariant and has bounded dilatation. It
follows thatF = ϕµ ◦ F̃ ◦ (ϕµ)−1 is a rational map with a Herman ringϕµ(A) of
rotation numberθ.

Lecture 21.
We present a simplified version of Sullivan’s proof of Fatou’s no wandering domain

conjecture, following N. Baker and C. McMullen.

(1) Theorem (Sullivan): Letf ∈ Ratd with d ≥ 2. Then every Fatou componentU of f
is eventually periodic, that is, there existn > m > 0 such thatf ◦n(U) = f ◦m(U).

The idea of the proof is as follows: Assuming there exists awanderingFatou
componentU (or simply awandering domain), we change the conformal structure
of the sphere along the grand orbit ofU to find an infinite-dimensional family of
rational maps of degreed, all quasiconformally conjugate tof . This is a contradic-
tion since the space Ratd of rational maps of degreed, as a Zariski open subset of
CP2d+1, is finite-dimensional. The eventual periodicity statement for entire maps
is false. For example, the mapz 7→ z + sin(2πz) has wandering domains.

(2) Lemma (Baker): IfU is a wandering domain for a rational mapf , thenf ◦n(U) is
simply-connected for all largen.

Proof. LetUn = f ◦n(U). ReplacingU by Uk for some largek if necessary, we may
assume that noUn contains a critical point off , so thatf ◦n : U → Un is a covering
map for alln. We can also arrange that∞ ∈ U . Since theUn are disjoint subsets of
CrU for n ≥ 1, we havearea(Un) → 0. But{f ◦n|U} is a normal family, so every
convergent subsequence of this sequence must be a constant function. In particular,
diam(f ◦n(K)) → 0 for every compact setK ⊂ U . Take any loopγ ⊂ U and set
γn = f ◦n(γ) ⊂ Un. By the above argumentdiam(γn) → 0. If Bn is the union of the
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bounded components ofC r γn, it follows thatdiam(Bn) → 0 also. Sincef(Bn)
is open,∂f(Bn) ⊂ γn+1, anddiam f(Bn) → 0, we must havef(Bn) ⊂ Bn+1 for
largen. In particular, the iterated images ofBn are subsets ofC r U for largen.
Montel’s theorem then impliesBn ⊂ F (f), which givesBn ⊂ Un. Thusγn is
null-homotopic inUn for largen. Sincef ◦n : U → Un is a covering map, we can
lift this homotopy toU , which provesU is simply connected.

(3) Let a rational mapf have a wandering domainU . In view of the above lemma,
we can assume thatUn = f ◦n(U) is simply-connected andf : Un → Un+1 is a
conformal isomorphism for alln ≥ 0. Given anL∞ Beltrami differentialµ defined
on U , we can construct anf -invariantL∞ Beltrami differential onĈ as follows.
Use the forward and backward iterates off to spreadµ along the grand orbit

GO(U) = {z ∈ Ĉ : f ◦n(z) ∈ Um for somen,m ≥ 0}.
On the complement̂CrGO(U), setµ = µ0. The resulting Beltrami differential is
defined almost everywhere on̂C, it satisfiesf ∗µ = µ by the way it is defined, and
‖µ‖∞ < ∞ since spreadingµ|U alongGO(U) by the iterates of the holomorphic
mapf does not change the dilatation. Now consider the deformationµt = tµ for
|t| < ε, whereε > 0 is small enough to guarantee‖µt‖∞ < 1 if |t| < ε. Note that
sincef is holomorphic,f ∗ acts as a linear rotation, sof ∗µt = µt. Let ϕt = ϕµt :

Ĉ→ Ĉ be the normalized solution of the Beltrami equation(ϕt)z = µt (ϕt)z which
fixes0, 1,∞. Thenft = ϕt ◦ f ◦ ϕ−1

t is a rational map of degreed, andt 7→ ft is
holomorphic, withf0 = f . The infinitesimal variation

w(z) =
d

dt

∣∣∣
t=0

ft(z)

defines a holomorphic vector field whose value atz lies in the tangent spaceTf(z)Ĉ.
In other words,w is a holomorphic section of the pull-back bundlef ∗(T Ĉ) which
in turn can be identified with a tangent vector inTfRatd. This is the so-calledinfini-
tesimal deformationof f induced byµ. We say thatµ induces atrivial deformation
if w = 0.

Another way of describingw is as follows: First consider the unique quasicon-
formal vector field solution to the equation∂v = µ which vanishes at0, 1,∞. This
is precisely the infinitesimal variationd

dt
|t=0 ϕt(z) of the normalized solution of the

Beltrami equation. It is not hard to check thatw = δfv, where

δfv(z) = v(f(z))− f ′(z)v(z)

measures the deviation ofv from beingf -invariant. Note in particular thatδfv
is holomorphic even thoughv is only quasiconformal, and thatw = δfv depends
linearly onµ, a fact that is not immediately clear from the first description ofw. It
follows thatµ induces a trivial deformation if and only ifv is f -invariant.
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It is easy to see that the triviality conditionδfv = 0 forcesv to vanish on the
Julia setJ(f). In fact, letz0 7→ z1 7→ · · · 7→ zn = z0 be a repelling cycle off
with multiplier λ. Then the conditionδfv = 0 impliesv(zj+1) = f ′(zj)v(zj) for
all j = 0, . . . , n− 1, so that

n−1∏
j=0

v(zj) = λ ·
n−1∏
j=0

v(zj).

Since|λ| > 1, it follows thatv(zj) = 0 for some, hence for allj. Now J(f) is the
closure of such cycles andv is continuous, sov(z) = 0 for all z ∈ J(f).

(4) The above construction gives well-defined linear maps

B(U)
i

↪→ B(Ĉ, f)
D−→ TfRatd

HereB(U) is the space ofL∞ Beltrami differentials inU , B(Ĉ, f) is the space of
f -invariantL∞ Beltrami differentials on̂C, andD is the linear operatorDµ = w =
δfv constructed above.

Lemma:B(U) contains an infinite-dimensional subspaceN(U) of compactly sup-
ported Beltrami differentials with the following property: Ifµ ∈ N(U) satisfies
µ = ∂v for some quasiconformal vector fieldv with v|∂U = 0, thenµ = 0.

Assuming this lemma for a moment, let us see how this implies the theorem. Con-
sider the above subspaceN(U) for a simply-connected wandering domainU and
restrict the above diagram to this subspace. IfD(µ) = 0 for someµ ∈ N(U), or in
other words ifµ induces a trivial deformation, that means the normalized solution
v to ∂v = µ is f -invariant. Hencev = 0 onJ(f) and in particular on the boundary
of U . By the property ofN(U), µ = 0. This means that the infinite-dimensional
subspaceN(U) injects intoTfRatd whose dimension is2d + 1. The contradiction
shows that no wandering domain can exist.

(5) It remains to prove the above Lemma. Let us first consider the corresponding prob-
lem for the unit diskD. Let N̂(D) ⊂ B(D) be the linear span of the Beltrami
differentialsµk(z) = zk dz

dz
for k ≥ 0. The vector field

Vk(z) =





1

k + 1
zk+1 ∂

∂z
|z| < 1

1

k + 1
z−(k+1) ∂

∂z
|z| ≥ 1

solves the equation∂Vk = µk onD. Let µ = ∂v ∈ N̂(D) andv|∂D = 0, and take
the appropriate linear combinationV of theVk which solves∂V = µ. ThenV − v
is holomorphic inD and coincides withV on the boundary∂D. This is impossible
if V |∂D has any negative power ofz in it. Henceµ = 0. To get the compact support
condition, letN(D) ⊂ B(U) consist of all Beltrami differentials which coincide
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with an element ofN̂(D) on the disk|z| < 1
2

and are zero on1
2
≤ |z| < 1. If

µ = ∂v ∈ N(D) andv|∂D = 0, thenv has to be zero on the annulus1
2

< |z| < 1

since it is holomorphic there. In particular, it is zero on|z| = 1
2
. Now the same

argument applied to the disk|z| < 1
2

showsµ = 0.

For the general case, consider a conformal isomorphismψ : D
∼=−→ U with

the inverseφ = ψ−1 and defineN(U) = φ∗(N(D)). Let v = v(z) ∂
∂z

be a
quasiconformal vector field such thatµ = ∂v ∈ N(U) and v|∂U = 0. Then
φ∗(v) = v(ψ(z))/ψ′(z) ∂

∂z
is a vector field onD which is holomorphic near the

boundary∂D andv(ψ(z)) → 0 as|z| → 1. By the reflection principle,v(ψ(z)) is
identically zero near the boundary ofD. Sinceψ∗µ = ∂φ∗(v) ∈ N(D), we must
haveψ∗µ = 0, which impliesµ = 0.

(6) Sullivan’s original argument had to deal with two essential difficulties: (i) the pos-
sibility of U being non simply-connected, perhaps of infinite topological type; (ii)
the possible complications near the boundary ofU , for example when∂U is not
locally-connected. He addressed the former by using a direct limit argument, and
the latter by using Carathéodory’s theory of “prime ends.” Both of these difficulties
are surprisingly bypassed in the present proof.

Lecture 22.

(1) Let A ⊂ Ĉ be a set with at least4 points andT be a connected complex manifold
with base pointt0. A holomorphic motion ofA over(T, t0) is a mapϕ : T×A → Ĉ
such that

(i) z 7→ ϕ(t, z) is injective for eacht ∈ T .

(ii) t 7→ ϕ(t, z) is holomorphic for eachz ∈ A.

(iii) ϕ(t0, z) = z for everyz ∈ A.

In other words,{ϕt(·) = ϕ(t, ·)}t∈T is a holomorphic family of injections ofA into
Ĉ, with ϕt0 = idA.

(2) Remarks:

• There is no assumption on the joint continuity ofϕ in (t, z), or even continuity
in z for fixed t. They follow automatically from theλ-Lemma to be discussed
below.

• For our purposes, we usually take(T, t0) = (D, 0) and callϕ a holomorphic
motion overD.

• We can always assume that the motion isnormalizedin the sense that0, 1,∞
belong toA and they remain fixed under the motion. To see this, take distinct
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pointsz1, z2, z3 in A and letα, βt ∈ Aut(Ĉ) be determined by

α(0) = z1 α(1) = z2 α(∞) = z3

and

βt(ϕt(z1)) = 0 βt(ϕt(z2)) = 1 βt(ϕt(z3)) = ∞.

Thenψt = βt ◦ ϕt ◦ α is a normalized holomorphic motion ofα−1(A).

(3) Examples:

• LetA = {0, 1,∞, a} andπ : D→ Ĉr{0, 1,∞} be the holomorphic universal
covering map which satisfiesπ(0) = a. Then{ϕt}t∈D defined by

ϕt(0) = 0 ϕt(1) = 1 ϕt(∞) = ∞ ϕt(a) = π(t)

is a holomorphic motion ofA overD.

• Let A be the latticeZ⊕ iZ and define{ϕt}t∈H by

ϕt(m + in) = m + tn

is a holomorphic motion ofA over(H, i).

• Let f : Ĉ→ Ĉ be a quasiconformal homeomorphism andµ = µf . For|t| < 1,
let ϕt = ϕtµ be the normalized solution of the Beltrami equation given by
MRMT. Thenϕt is a holomorphic motion of̂C overD. Thus, every quasicon-
formal homeomorphism of the sphere gives rise canonically to a holomorphic
motion of the sphere.

• Let U ( C be a Jordan domain. Suppose there are conformal isomorphisms
f i

t : U → U i
t (i = 0, 1) depending holomorphically on a parametert ∈ D such

thatU i
t ⊂ U andU0

t ∩U1
t = ∅. For every finite wordi1 · · · in of 0’s and1’s, let

U i1···in
t = f in

t ◦ · · · ◦ f i1
t (U)

and define the Cantor sets

Kt =
⋂
n≥1

⋃
U i1···in

t .

Then theKt determine a holomorphic motion of the base Cantor setK0 over
D. To see this, take az ∈ K0 and suppose that it is represented by the infinite
word i1i2i3 . . . so that

z = U i1
0 ∩ U i1i2

0 ∩ U i1i2i3
0 ∩ · · ·

Define

ϕ(t, z) = U i1
t ∩ U i1i2

t ∩ U i1i2i3
t ∩ · · · ∈ Kt.
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Note thatϕ(t, z) is the locally uniform limit of the sequence of holomorphic
functionsϕn(t) = f in

t ◦ · · · ◦ f i1
t , so it depends holomorphically ont. It is now

easy to check that(t, z) 7→ ϕ(t, z) is a holomorphic motion ofK0 overD.

(4) LetE ⊂ Ĉ be a set with at least4 points. A homeomorphismf : E → f(E) ⊂ Ĉ
is calledquasiconformalif there exists anM > 0 such that

distbCr{0,1,∞}(χ(f(z1), f(z2), f(z3), f(z4)), χ(z1, z2, z3, z4)) ≤ M

for all quadruples(z1, z2, z3, z4) in E. HeredistbCr{0,1,∞} is the hyperbolic distance
in the trice puncture sphere andχ is the cross ratio defined by

χ(z1, z2, z3, z4) =
z3 − z1

z2 − z1

· z4 − z2

z4 − z3

.

It is not hard to check that this definition of quasiconformality coincides with the
standard definition whenE = Ĉ.

(5) λ-Lemma (Mãne-Sad-Sullivan and Lyubich): A holomorphic motionϕ : D×A →
Ĉ extends uniquely to a holomorphic motionΦ : D × A → Ĉ. Moreover,Φ is
continuous onD × A andΦt : A → Φt(A) is a quasiconformal homeomorphism
for eacht ∈ D.

Proof. Without losing generality, assume that the motion is normalized. By Mon-
tel’s Theorem,

F = {t 7→ ϕ(t, z) : z ∈ A}
is a normal family of holomorphic functionsD → Ĉ, so it has compact closure
F in Hol(D, Ĉ). Moreover, iff, g ∈ F are distinct, thenf(t) 6= g(t) for all t ∈
D. To see this, takefn, gn ∈ F such thatfn 6= gn, fn → f andgn → g, and
note thatt 7→ fn(t) − gn(t) is nowhere vanishing by the injectivity property of
holomorphic motions. It follows from Hurwitz Theorem thatt 7→ f(t) − g(t) is
nowhere vanishing as well.

For eacht ∈ D consider the continuous map

πt : F → Ĉ πt(f) = f(t).

By the above observation,πt is injective. SinceF is compact, it follows thatπt is
a homeomorphism onto its image, which is easily seen to be the closure ofϕt(A).
Now

Φ(t, z) = πt ◦ π−1
0 (z) (t, z) ∈ D× A,

extendsϕ to a motion ofA.
The definition of the compact-open topology onF shows that for eachr < 1, the

family {πt}|t|≤r is equicontinuous, so the same must be true for the family{Φt}|t|≤r.
It follows thatΦ is continuous on the productD× A.
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Finally, choose a quadruple(z1, z2, z3, z4) in A and define a holomorphic map
g : D→ Ĉ r {0, 1,∞} by

g(t) = χ(Φt(z1), Φt(z2), Φt(z3), Φt(z4)).

By Schwarz Lemma,

distbCr{0,1,∞}(g(t), g(0)) ≤ distD(t, 0) = log

(
1 + |t|
1− |t|

)
,

or

distbCr{0,1,∞}(χ(Φt(z1), Φt(z2), Φt(z3), Φt(z4)), χ(z1, z2, z3, z4)) ≤ log

(
1 + |t|
1− |t|

)
,

which shows eachΦt : A → Φt(A) is quasiconformal.

(6) The Improvedλ-Lemma (Slodkowski): A holomorphic motionϕ : D × A → Ĉ
extends to a holomorphic motionΦ : D × Ĉ → Ĉ. The extended motionΦ is
continuous onD× Ĉ andΦt : Ĉ→ Ĉ is Kt-quasiconformal for eacht ∈ D, where
Kt = 1+|t|

1−|t| .

(7) Remarks:

• It was proved by Sullivan and Thurston that there exists a universal constant
0 < a < 1 such that every holomorphic motion ofA overD extends to a holo-
morphic motion of the sphere over the smaller diskD(0, a). Bers and Royden
proved that one can takea = 1

3
. Moreover, their extended motion overD(0, 1

3
)

had the advantage of being canonical in the sense that the Beltrami differen-
tial µΦt is harmonic on each component ofĈ r A. (A Beltrami differentialµ
on a hyperbolic Riemann surfaceX is calledharmonicif µ = φ

(ρX)2
for some

holomorphic quadratic differentialφ onX.) With this additional property, they
proved that the extended motion is unique.

• As Sullivan and Thurston observed, to obtain the improvedλ-Lemma, it suf-
fices to prove the followingholomorphic axiom of choice: Given a finite set
A and a pointa /∈ A, every holomorphic motion ofA overD extends to a
holomorphic motion ofA ∪ {a} overD.

• In the original version ofλ-Lemma,D can be replaced with an arbitrary con-
nected complex manifold, as essentially the same proof shows. In the Bers-
Royden version,D can be replaced with the unit ball in any complex normed
linear space. In the improvedλ-Lemma, however,D cannot be replaced for
free; see the next example.
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(8) Example (Douady): LetT = Ĉ r {0, 1,∞}, with the base pointt0 = 2. Let
A = {0, 1, 2,∞} and define a holomorphic motionϕ : T × A → Ĉ by

ϕt(0) = 0 ϕt(1) = 1 ϕt(∞) = ∞ ϕt(2) = t.

This motion ismaximalin the sense that it cannot be extended to a holomorphic
motion of any bigger set overT . To see this, it suffices to show that every holo-
morphic mapf : T → T has a fixed point. Suppose by way of contradiction that
such a fixed point free map exists. By Picard’s Great Theorem, none of0, 1,∞
can be an essential singularity forf , sof extends to a rational mapf : Ĉ → Ĉ of
degreed ≥ 1. As f−1{0, 1,∞} ⊂ {0, 1,∞}, f acts bijectively on{0, 1,∞}. By
the assumption all thed + 1 fixed points off are among{0, 1,∞}. If d = 1, f is
an automorphism which fixes{0, 1,∞} pointwise or fixes one of them and swaps
the other two. In either case, it must have a fixed point outside{0, 1,∞}, which is
a contradiction. Ifd > 1, each fixed point in{0, 1,∞} is a critical point of order
d−1 and in particular is a simple (i.e., multiplicity1) fixed point. Sincef has2d−2
critical points altogether, it follows thatf has at most2 fixed points in{0, 1,∞}.
Thusd + 1 ≤ 2, which is again a contradiction.

(9) The analogue ofλ-Lemma is certainly false for continuous motions. As an ex-
ample, letA = { 1

n
}n≥1 and define the continuous motionϕ : R × A → Ĉ by

ϕ(t, 1
n
) = 1

n
+ i nt. Evidently,ϕ has no continuous extension toR× A.


