Math 701 Problem Set 10 due Friday 12/6/2013

 \mathfrak{M} and *m* will denote the σ -algebra of Lebesgue measurable sets in \mathbb{R} and Lebesgue measure, respectively.

Problem 1. For $E \subset \mathbb{R}$ and $\lambda > 0$, set $\lambda E = \{\lambda x : x \in E\}$. Show that if $E \in \mathfrak{M}$, then $\lambda E \in \mathfrak{M}$ and $m(\lambda E) = \lambda m(E)$. (Hint: Verify that the map $t \mapsto \lambda t$ preserves G_{δ} 's, F_{σ} 's, and sets of measure zero.)

Problem 2. Imitate the construction of the middle-thirds Cantor set to show that for every $0 < \alpha < 1$ there is a Cantor set $K \subset [0, 1]$ with $m(K) = \alpha$.

Problem 3. Construct a measurable set $E \in [0, 1]$, with m(E) = 1/2, such that both E and $[0, 1] \setminus E$ are dense in [0, 1].

Problem 4. Let $E \subset [0, 1]$ be the set of numbers whose unique non-terminating decimal expansion does not contain the digit 7. Show that $E \in \mathfrak{M}$ and find m(E).

Problem 5. Let $\{E_n\}_{n\geq 1}$ be a sequence in \mathfrak{M} such that $\sum_{n\geq 1} m(E_n) < +\infty$. Show that almost every point of \mathbb{R} belongs to at most finitely many of the E_n . (Hint: Let A be the set of points in \mathbb{R} that belong to infinitely many of the E_n . Verify that

$$A = \bigcap_{k \ge 1} \bigcup_{n \ge k} E_n$$

and conclude that m(A) = 0.)

Problem 6. Let $E \subset [0, 1]$ be a measurable set with m(E) > 0. Show that the arithmetical difference set

$$E - E = \{x - y : x, y \in E\}$$

contains a neighborhood of the origin. (Hint: Given a small $\varepsilon > 0$, find an open set $U \supset E$ with $m(E) > (1 - \varepsilon)m(U)$. Write U as the disjoint union of open intervals. One of these intervals, say I, must satisfy $m(E \cap I) > (1 - \varepsilon)m(I)$. Show that if $|t| < \delta = (1 - 2\varepsilon)|I|$, then $E \cap I$ meets its translate by t. This will prove E - E contains $(-\delta, \delta)$.)