Math 701 Problem Set 10

due Friday 12/6/2013

\mathfrak{M} and m will denote the σ-algebra of Lebesgue measurable sets in \mathbb{R} and Lebesgue measure, respectively.

Problem 1. For $E \subset \mathbb{R}$ and $\lambda>0$, set $\lambda E=\{\lambda x: x \in E\}$. Show that if $E \in \mathfrak{M}$, then $\lambda E \in \mathfrak{M}$ and $m(\lambda E)=\lambda m(E)$. (Hint: Verify that the map $t \mapsto \lambda t$ preserves G_{δ} 's, F_{σ} 's, and sets of measure zero.)

Problem 2. Imitate the construction of the middle-thirds Cantor set to show that for every $0<\alpha<1$ there is a Cantor set $K \subset[0,1]$ with $m(K)=\alpha$.
Problem 3. Construct a measurable set $E \in[0,1]$, with $m(E)=1 / 2$, such that both E and $[0,1] \backslash E$ are dense in $[0,1]$.
Problem 4. Let $E \subset[0,1]$ be the set of numbers whose unique non-terminating decimal expansion does not contain the digit 7 . Show that $E \in \mathfrak{M}$ and find $m(E)$.
Problem 5. Let $\left\{E_{n}\right\}_{n \geq 1}$ be a sequence in \mathfrak{M} such that $\sum_{n \geq 1} m\left(E_{n}\right)<+\infty$. Show that almost every point of \mathbb{R} belongs to at most finitely many of the E_{n}. (Hint: Let A be the set of points in \mathbb{R} that belong to infinitely many of the E_{n}. Verify that

$$
A=\bigcap_{k \geq 1} \bigcup_{n \geq k} E_{n}
$$

and conclude that $m(A)=0$.)
Problem 6. Let $E \subset[0,1]$ be a measurable set with $m(E)>0$. Show that the arithmetical difference set

$$
E-E=\{x-y: x, y \in E\}
$$

contains a neighborhood of the origin. (Hint: Given a small $\varepsilon>0$, find an open set $U \supset E$ with $m(E)>(1-\varepsilon) m(U)$. Write U as the disjoint union of open intervals. One of these intervals, say I, must satisfy $m(E \cap I)>(1-\varepsilon) m(I)$. Show that if $|t|<\delta=(1-2 \varepsilon)|I|$, then $E \cap I$ meets its translate by t. This will prove $E-E$ contains $(-\delta, \delta)$.)

