Math 701 Problem Set 11

due Friday 12/13/2013

 \mathfrak{M} and m will denote the σ -algebra of Lebesgue measurable sets in \mathbb{R} and Lebesgue measure, respectively.

Problem 1.

- (i) Suppose $f,g:\mathbb{R}\to [-\infty,+\infty]$ are measurable. Show that the sets $\{x\in\mathbb{R}:f(x)< g(x)\}$ and $\{x\in\mathbb{R}:f(x)=g(x)\}$ are measurable.
- (ii) Suppose $f_n : \mathbb{R} \to [-\infty, +\infty]$ is a sequence of measurable functions. Show that the set of points at which $\lim_{n\to\infty} f_n$ exists is measurable.

Problem 2. Let $C \subset [0,1]$ be the middle-thirds Cantor set and $f:C \to [0,1]$ be the standard surjection which sends ternary to binary expansions. f extends to a continuous non-decreasing map $f:[0,1] \to [0,1]$ which is constant on every gap of C (this is the so-called "Cantor function" or "Devil's staircase"). Let g(x) = x + f(x). Show that g is continuous and strictly increasing, and $g(C) \subset [0,2]$ has measure 1. Use this to prove that there are measurable subsets of C which map continuously to non-measurable sets (all such measurable sets are therefore non-Borel!).

Problem 3. Suppose $f \in L^1(\mathbb{R})$. Show that there is a constant C > 0 such that for all t > 0.

$$m\big(\{x\in\mathbb{R}:|f(x)|>t\}\big)<\frac{C}{t}.$$

Problem 4. The *average value* of $f \in L^1(\mathbb{R})$ over a set $E \in \mathfrak{M}$ of positive measure is defined by

$$\bar{f}_E = \frac{1}{m(E)} \int_E f \, dm.$$

Prove that $\bar{f}_E \in [a, b]$ for every E if and only if $f(x) \in [a, b]$ for almost every $x \in \mathbb{R}$.

Problem 5. Suppose $f_n : \mathbb{R} \to [0, +\infty]$ are measurable, $f_1 \ge f_2 \ge f_3 \ge \cdots \ge 0$, and $f_n(x) \to f(x)$ for all $x \in \mathbb{R}$. If $f_1 \in L^1(\mathbb{R})$, show that

$$\lim_{n\to\infty}\int_{\mathbb{R}}f_n\,dm=\int_{\mathbb{R}}f\,dm.$$

Show by an example that the condition $f_1 \in L^1(\mathbb{R})$ cannot be dispensed with.

Problem 6. Suppose $f \in L^1(\mathbb{R})$. Show that for every $\varepsilon > 0$ there is a $\delta > 0$ such that $m(E) < \delta$ implies $\int_E |f| dm < \varepsilon$. (Hint: Proceed in one of the following ways: (1) Work with the sequence $f_n = \min\{|f|, n\}$ of bounded integrable functions on \mathbb{R} which converges monotonically to |f|; or (2) Suppose there is an $\varepsilon > 0$ and sets E_n with $m(E_n) < 1/2^n$ such that $\int_{E_n} |f| dm > \varepsilon$ for all n. Look at the integral of |f| over $\bigcup_{k \ge n} E_k$ as $n \to \infty$ to reach a contradiction.)