Math 701 Problem Set 4

due Friday 10/4/2013

Problem 1. Suppose $-\infty < a < b < +\infty$ and $f:(a,b) \to \mathbb{R}$ is uniformly continuous. Show that $\lim_{x\to a^+} f(x)$ and $\lim_{x\to b^-} f(x)$ exist.

Problem 2. Let X be a metric space.

- (i) Suppose E, F are disjoint closed subsets of X. Show that there are disjoint open sets U, V in X such that $E \subset U$ and $F \subset V$.
- (ii) Suppose p_1, \ldots, p_n are distinct points in X and a_1, \ldots, a_n are real numbers. Show that there exists a continuous function $f: X \to \mathbb{R}$ such that $f(p_i) = a_i$ for every $1 \le i \le n$.

(Hint: Use Urysohn's lemma for both parts. In (ii), first argue that there exists a continuous function on X which takes the value 1 at p_i and vanishes at p_j for all $j \neq i$.)

Problem 3. A subset of \mathbb{R} is called a G_{δ} -set if it is a countable intersection of open sets.

- (i) Show that every closed set in \mathbb{R} is a G_{δ} -set.
- (ii) Show that $\mathbb{R} \setminus \mathbb{Q}$, the set of irrational numbers, is a G_{δ} -set.
- (iii) By contrast, show that \mathbb{Q} is not a G_{δ} -set.

(Hint: For (i), consider ε -neighborhoods. For (iii), use Baire's theorem.)

Problem 4. Given a function $f : \mathbb{R} \to \mathbb{R}$, let C(f) denote the set of points at which f is continuous.

(i) Prove that

$$C(f) = \bigcap_{n \ge 1} \left\{ x \in \mathbb{R} : \text{diam } f((x - r, x + r)) < \frac{1}{n} \text{ for some } r > 0 \right\}.$$

In particular, C(f) is always a G_{δ} -set.

- (ii) Conclude that there is no $f : \mathbb{R} \to \mathbb{R}$ with $C(f) = \mathbb{Q}$.
- (iii) By contrast, give an example $f: \mathbb{R} \to \mathbb{R}$ with $C(f) = \mathbb{R} \setminus \mathbb{Q}$.

Problem 5. Suppose $f: \mathbb{R} \to \mathbb{R}$ is continuous and $\lim_{n\to\infty} f(nx) = 0$ for every $x \in \mathbb{R}$. Show that $\lim_{n\to\infty} f(x) = 0$. (Hint: For a given $\varepsilon > 0$, apply Baire's theorem to the sets

$$F_k = \{x \in \mathbb{R} : |f(nx)| \le \varepsilon \text{ for all } n > k\}$$
 $k = 1, 2, 3, \ldots$

Problem 6. Suppose X is a complete metric space and \mathscr{F} is a family of continuous functions $X \to \mathbb{R}$. Assume \mathscr{F} is a pointwise bounded family in the following sense: For each $x \in X$, there is a constant $M_x > 0$ such that $|f(x)| \le M_x$ for every $f \in \mathscr{F}$. Show that there is a non-empty open set $U \subset X$ and a number M > 0 such that $|f(x)| \le M$ for every $f \in \mathscr{F}$ and every $x \in U$. This is often known as the *principle of uniform boundedness*. (Hint: Use Baire's theorem.)