Math 701 Problem Set 6

due Friday 10/25/2013

The letter C will be reserved for the standard middle-thirds Cantor set in \mathbb{R} .

Problem 1. A non-empty compact, perfect, totally disconnected metric space is called a *Cantor space*. All Cantor spaces are homeomorphic to the standard Cantor set C. Show that if X is a Cantor space and $Y \neq \emptyset$ is a clopen (=closed and open) subset of X, then Y is a Cantor space, so X and Y are homeomorphic.

Problem 2. Show that C is homeomorphic to $C \times C$. (Hint: Check that $C \times C$ is a Cantor space.)

Problem 3. Prove that the arithmetical difference set

$$C - C = \{x - y : x, y \in C\}$$

is the interval [-1, 1]. (Hint: For each $t \in [-1, 1]$, use geometry to verify that the line y = x - t intersects $C_n \times C_n$ for every n. Here C_n is the level-n approximation of C consisting of 2^n intervals of length $1/3^n$.)

Problem 4. Show that C is homogeneous in the following sense: Given any pair $p, q \in C$ there exists a homeomorphism $f: C \to C$ such that f(p) = q. This shows in particular that the "endpoints" of C (such as 0, 1, 1/3 or 8/9) enjoy no topological distinction whatsoever.

Problem 5. Let $\varphi: C \to \Sigma_2$ be the homeomorphism which assigns to each $x \in C$ its unique dyadic address $\varphi(x) = s_1 s_2 s_3 \cdots$ determined by

$$\bigcap_{n\geq 1} I_{s_1\cdots s_n} = \{x\}.$$

Show that if $0 < \alpha < \log 2 / \log 3$, the map φ is Hölder of exponent α . That is, there exists an M > 0 such that

$$d(\varphi(x), \varphi(y)) \le M|x-y|^{\alpha}$$
 if $x, y \in C$.

Problem 6. Let $\sigma: \Sigma_2 \to \Sigma_2$ be the *shift map* defined by

$$\sigma(s_1s_2s_3\cdots)=s_2s_3s_4\cdots$$

- (i) Verify that σ is continuous and 2-to-1.
- (ii) How many fixed points does σ have? How many periodic points of period 2? Of period 3? Of a prime period? Of a general period?
- (iii) Show that periodic points of σ are dense in Σ_2 , that is, given $s \in \Sigma_2$ and $\varepsilon > 0$ there is a $t \in \Sigma_2$ which is fixed by some iterate $\sigma^{\circ k}$, such that $d(s,t) < \varepsilon$.
- (iv) Show that there are points $s \in \Sigma_2$ whose orbit $\{s, \sigma(s), \sigma^{\circ 2}(s), \sigma^{\circ 3}(s), \ldots\}$ is dense in Σ_2 .
- (v) Under the homeomorphism $\varphi: C \to \Sigma_2$, the conjugate map $f = \varphi^{-1} \circ \sigma \circ \varphi$: $C \to C$ has similar orbit properties as σ . Can you find an explicit formula for f?