Math 701 Problem Set 7

due Friday 11/1/2013

Problem 1. Suppose X is a metric space, $f_n \in \mathcal{C}(X)$, and $f_n \to f$ uniformly on X.

- (i) Show that $f_n(p_n) \to f(p)$ in \mathbb{C} whenever $p_n \to p$ in X.
- (ii) Show that if each f_n is uniformly continuous on X, so is f.

Problem 2. Consider

$$f(x) = \sum_{n=1}^{\infty} \frac{1}{1 + n^2 x}.$$

For what values of x does the series converge? On what intervals does it converge uniformly? Where is f continuous? Is f a bounded function on its domain?

Problem 3. Suppose $f:[a,b] \to \mathbb{R}$ is a C^{∞} function such that the sequence $\{f^{(n)}\}$ of its successive derivatives converges uniformly on [a,b]. Find the limit function.

Problem 4. Prove that there is no sequence of continuous functions $f_n : \mathbb{R} \to \mathbb{R}$ such that

$$\lim_{n \to \infty} f_n(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \\ 1 & \text{if } x \notin \mathbb{Q}. \end{cases}$$

(Hint: Use Baire's theorem.)

Problem 5. Fix an integer $d \ge 1$. Let $P_n : \mathbb{R} \to \mathbb{R}$ be a sequence of polynomials of degree $\le d$. If $P_n(x) \to 0$ for every $x \in [a,b]$, show that $P_n \to 0$ uniformly on [a,b]. (Suggestion: First try the easier case of d=2 and [a,b]=[0,1].)

Problem 6.

- (i) Let X be a compact metric space. Suppose a sequence of continuous functions $f_n: X \to \mathbb{R}$ converges monotonically increasing to a continuous function $f: X \to \mathbb{R}$ (that is, $f_1(x) \le f_2(x) \le f_3(x) \le \cdots$ tend to f(x) for all $x \in X$). Prove that $f_n \to f$ uniformly on X.
- (ii) Suppose a sequence of increasing functions $f_n : [a, b] \to \mathbb{R}$ converges pointwise to a continuous function $f : [a, b] \to \mathbb{R}$. Prove that $f_n \to f$ uniformly on [a, b].

(Hint: For (ii), use uniform continuity of f.)