Math 701 Problem Set 8

due Friday 11/15/2013

Problem 1. Suppose $\{P_n\}$ is a sequence of real polynomials such that $P_n \to f$ uniformly on \mathbb{R} . What can you say about the limit function f?

Problem 2. Let $\{f_n\}$ and g be Riemann integrable functions on [0, 1] such that $|f_n(x)| \le g(x)$ for all x and n. Define

$$F_n(x) = \int_0^x f_n(t) dt.$$

Show that $\{F_n\}$ has a subsequence which converges uniformly on [0, 1].

Problem 3. Let $\{f_n\}$ be a sequence of twice differentiable functions on [a,b] such that $f_n(a) = f'_n(a) = 0$ for all n. Assume further that there is an M > 0 such that $|f''_n(x)| \le M$ for all x and n. Show that $\{f_n\}$ has a subsequence which converges uniformly on [a,b]. (Hint: Mean value theorem and Arzelà-Ascoli are helpful here.)

Problem 4.

- (i) Suppose $f:[0,1] \to \mathbb{R}$ is continuous and $\int_0^1 x^n f(x) dx = 0$ for all integers $n \ge 0$. Show that f = 0 on [0,1].
- (ii) Repeat part (i) assuming that $\int_0^1 x^n f(x) dx = 0$ for all large enough n.

(Hint: In (i), the integral of f against any polynomial is zero. Use the Weierstrass approximation theorem to show that $\int_0^1 f^2 = 0$. For (ii), well..., isn't it obvious?)

Problem 5. Suppose X is a compact metric space. A subset $I \subset \mathcal{C}(X)$ is called an *ideal* if $f, g \in I$ and $h \in \mathcal{C}(X)$ imply $f + g \in I$ and $fh \in I$. An ideal $I \neq \mathcal{C}(X)$ is called *maximal* if for any ideal J, the inclusions $I \subset J \subset \mathcal{C}(X)$ imply J = I or $J = \mathcal{C}(X)$ (that is, there is no ideal properly between I and $\mathcal{C}(X)$).

(i) Verify that if $p \in X$, then

$$I_p = \{ f \in \mathscr{C}(X) : f(p) = 0 \}$$

is a maximal ideal.

(ii) Show that every maximal ideal in $\mathscr{C}(X)$ is of the form I_p for some $p \in X$.

(Hint for (ii): Let I be a maximal ideal. If for every $p \in X$ there is an $f_p \in I$ with $f_p(p) \neq 0$, construct a function in I which does not vanish anywhere, and conclude that $I = \mathcal{C}(X)$, which is a contradiction.)

Problem 6. A special case of the Stone-Weierstrass theorem shows that polynomials $\sum a_{ij} x^i y^j$ in two variables are dense in the space of all continuous functions $[a,b] \times [c,d] \to \mathbb{R}$. Use the Stone-Weierstrass theorem to prove the following analog in a general product space: Suppose X,Y are compact metric spaces and $f:X\times Y\to \mathbb{R}$ is continuous. Then, for every $\varepsilon>0$ there are continuous functions $f_i:X\to \mathbb{R}$ and $g_i:Y\to \mathbb{R}$

 $(1 \le i \le n)$ such that

$$\sup_{(x,y)\in X\times Y}\left|f(x,y)-\sum_{i=1}^n f_i(x)g_i(y)\right|<\varepsilon.$$

Thus, continuous functions of two variables can be uniformly approximated on compact sets by finite combinations of products of functions of a single variable.