## Math 701 Problem Set 9

## due Friday 11/22/2013

**Problem 1.** Suppose  $f:[a,b] \to \mathbb{R}$  is increasing, that is,  $x \le y$  implies  $f(x) \le f(y)$ . Show that  $f \in \mathcal{R}[a,b]$ . (Hint: Take a partition P of [a,b] into equal pieces and compute U(f,P)-L(f,P).)

In the next three problems the Lebesgue-Riemann integrability criterion will be useful.

**Problem 2.** Recall that the *characteristic function* of a set  $E \subset [a, b]$  is defined by

$$\chi_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{if } x \notin E. \end{cases}$$

Under what condition on *E* is it true that  $\chi_E \in \mathcal{R}[a,b]$ ?

## Problem 3.

- (i) Suppose  $f \in \mathcal{R}[a,b]$  and  $\phi : \mathbb{R} \to \mathbb{R}$  is continuous. Show that  $\phi \circ f \in \mathcal{R}[a,b]$ .
- (ii) Show that  $f \in \mathcal{R}[a, b]$  implies  $f^2 \in \mathcal{R}[a, b]$ .
- (iii) Show that  $f^2 \in \mathcal{R}[a, b]$  does not imply  $f \in \mathcal{R}[a, b]$ .
- (iv) Show that  $f^3 \in \mathcal{R}[a,b]$  implies  $f \in \mathcal{R}[a,b]$ .

**Problem 4.** Suppose  $f \in \mathcal{R}[a,b]$  and f(x) > 0 for all  $x \in [a,b]$ . Show that  $\int_a^b f > 0$ .

**Problem 5.** If  $f : \mathbb{R} \to \mathbb{R}$  is  $C^1$  and  $E \subset \mathbb{R}$  has measure zero, prove that the image f(E) has measure zero. Show by an example that this is no longer true if f is only assumed to be continuous.

**Problem 6.** Recall that a subset of  $\mathbb{R}$  is *meager* if it is contained in a countable union of nowhere dense sets. Show that there is a meager set  $E \subset \mathbb{R}$  whose complement has measure zero. Thus, in the decomposition  $\mathbb{R} = E \cup E^c$ , both sets are small but in different meanings. (Hint: For each n, cover  $\mathbb{Q}$  by countably many open intervals of total length < 1/n.)