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Preface

This book is based on the lectures that I have given since the early 2000s at the
University of Pennsylvania, Stony Brook University, and the City University
of New York. It offers enough material for a yearlong graduate-level course
and serves as a preparation for further studies in complex analysis and
beyond, especially Riemann surfaces, conformal geometry, and holomorphic
dynamics.

The presentation is guided by a desire to highlight the topological
underpinnings of complex analysis and to accentuate the geometric viewpoint
whenever possible. This is evident from the following sample of special topics
that are treated in the book: The dynamics of M6bius transformations, bound-
ary behavior of Riemann maps a la Carathéodory, Hausdorff dimension and
holomorphic removability, conformal metrics and Ahlfors’s generalization
of the Schwarz lemma, holomorphic (branched) covering maps, and the
uniformization theorem for spherical domains. To remain loyal to the scope
and spirit of the project, I have resisted the temptation to discuss Riemann
surfaces.

The primary audience of the book are the beginning graduate students
with a solid background in undergraduate analysis and topology. A basic
knowledge of complex variables is helpful even though it is not formally
assumed. Elementary measure theory (Lebesgue measure and integral, sets
of measure zero, the dominated convergence theorem, etc.) shows up on a few
occasions, but it is not a key prerequisite. Numerous worked-out examples,
illustrations, short historical notes, and more than 360 problems have been
incorporated throughout to make the text accessible for independent study
by a strong and motivated student. Above all, I have strived to make the
treatment of every topic appealing even to the more experienced readers
with prior exposure to complex analysis.



The bulk of the book can be covered over two semesters, with enough
remaining for reading projects if desired. A possible plan that I generally
adhere to is to cover most of chapters 1-7 in the first semester followed
by the “essential” material from chapters 8-13 in the second semester. Of
course what is considered essential depends on one’s taste and point of
view, and the organization of topics allows quite a bit of flexibility in this
respect. Occasionally I postpone a few items from chapters 1-7 until the
second semester when students have developed more knowledge and skill.
Examples are on the boundary behavior of Riemann maps, or and
§4.5| on conformal metrics and the invariant form of the Schwarz lemma
which can be presented ahead of Ahlfors’s generalization in

It would be hard to overstate how much this work has benefited from the
existing literature on complex analysis. My sources have been gathered in the
bibliography, but I must especially acknowledge the influence of the books
by Walter Rudin [Rug] (even though it famously lacks geometric flavor)
and Reinhold Remmert [Rel; the latter also contains a wealth of historical
remarks which have been helpful in several of my marginal notes. In writing
a volume of this size I may have inadvertently misplaced an attribution or
omitted a reference, in which case I would be grateful to be notified of the
error.

This project was a long time in the making. It owes a great deal to my
teachers and colleagues who have shared their insights into the subtleties of
complex analysis and in doing so shaped my own view of the subject. Id like
to thank John Milnor for his guidance and inspiration, mathematical and
otherwise, over the years. I'm also grateful to Christopher Bishop, Araceli
Bonifant, Adam Epstein, Fredrick Gardiner, Linda Keen, Mikhail Lyubich,
Bernard Maskit, Yair Minsky, and Dennis Sullivan. Finally, ’'m indebted to
my students, too many to name here, whose incisive comments and clever
questions during my lectures have improved the presentation of this book.

Saeed Zakeri

May 2020



“When I was a child I took pride in how many pages I
read in an hour. In college I learned how foolish that was.
When reading mathematics ten pages a day can be an
extremely fast pace. Even one page a day can be quite fast.
On the other hand, if you already understand something,
you may get more by skimming than by reading every word.
You need to be alert and suspicious; you need to question
and think about what you’re reading in your own way. ...
Don’t be afraid to stop in midparagraph or midsentence
when something surprises or puzzles you. Speed isn’t the
issue. Don’t assume something is obvious just because an
author treats it that way. What you work out on the side,
even though it takes much more time, will have immensely
more value than what you read straight through.”

- William P. Thurston]

1From Quantum magazine’s pilot issue 1, January 19go, page 7 ©National Science
Teaching Association
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