ON ARITHMETICAL DIFFERENCE OF TWO CANTOR SETS

SAEED ZAKERI

ABsTRACT. We construct a large class of dynamically defined Cantor sets on
the real line whose self-difference sets are Cantor sets of arbitrary positive
measure. This relates to a question posed by J. Palis which arises naturally

in the context of homoclinic bifurcations in dimension 2.

§1. Introduction. An interesting theorem of Steinhaus [1] asserts that if A and
B are measurable subsets of some R¥ with positive measure, then their arithmetical
difference A — B (hence their sum) contains an open ball. There are many sets of
measure zero, however, such that their difference sets also contain an open ball. For
example, it is well-known that K — K = [—1,1], where K C [0,1] is the classical
middle-third Cantor set. In fact, the problem of investigating properties of A — B
where A and B have measure zero is much more challenging.

In [2], J. Palis proposes some problems concerning difference set of Cantor sets on

the real line. One of them is:

Problem. Let K; and K5 be two ‘affine’ (to be defined below) Cantor sets in R.
Is it true that K; — K5 has measure zero or else contains an interval? Is the same

conclusion true for ‘dynamically defined’ (to be defined below) Cantor sets?

The purpose of this note is to give a general counterexample to the second question
above. While completing this paper, I was informed that the same problem is solved

independently by Sannami [3]. Apparently the first question is still open.

§2. Preliminaries and Notation. Let 0 = qp < a3 < -+ < agnuy1 = 1 be a
partition of [0,1] with m > 1. Set E; = [agj, azj4+1], 0 < j < m. By definition, a
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dynamically defined Cantor set K with basis EgU---U E,, is (),so ¥ " (EyU---UE,),
where 1 : EgU---UE,, — [0,1] is a C'™ function, a > 0, and71/J|Ej is an expanding
map onto [0,1]. Therefore a dynamically defined Cantor set is determined by a finite
collection of disjoint closed intervals in [0,1] and a C'*t® expanding map on this
collection onto [0,1].

A dynamically defined Cantor set is called affine if the restriction of 1 to each E;
is affine, i.e., (¢|E;)” = 0. In other words, an affine Cantor set is obtained by first
removing a finite number of open intervals in [0,1], then applying the same surgery
on each of the remaining intervals by a [linear change of scale, and so on.

For our purposes, we shall be primarily concerned with a special class of Cantor
sets. Strictly speaking, for every integer p > 1 and every sequence a = (ay, ag, -+ )
of real numbers with 0 < a; < 1/p, the middle p-Cantor set with index o, K(cv, p), is
defined as follows: First remove from [0,1] its p ‘middle’ open intervals each of length
a1, and denote the remainder by K;. Next remove from each connected component

of K, say J, its p ‘middle’ open intervals each of length ay - m(J), and denote the

remainder by K, an so on. Then K(a,p) := (1,5, K. For example, the classical
middle third Cantor set is K(w, 1), where & = (3,3,---). A nontrivial question

about these Cantor sets is to find conditions on the index o under which K(a,p) is
dynamically defined. Evidently K(a,p) is affine iff o =g =+ =, = - - -

In the next section we first construct a class of K (a,p)’s whose self-difference sets
have positive measure yet containing no open intervals. Next we determine conditions
on the index « such that K («,p) is dynamically defined. The fact that such o’s exist

gives a negative answer to the second question mentioned in the first section.

83. Main Result. First of all we prove the following

Theorem 1.Given p > 1 there exist infinitely many indices o for which the self-

difference set of K = K(«, p) is a Cantor set with any given measure 0 < o < 2.

Proof. That t € K — K means the line y = x — ¢ in R? intersects K x K (it is
evident that K — K C [—1,1]). Choose a in such a way that 1/(2p+1) <a; < 1/p
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for every 5 > 1. In each step of constructing K, there appear finitely many open in-
tervals in [—1, 1] such that if ¢ belongs to one of these intervals, then the line y = z—t
does not intersect K x K. More precisely, in the n-th step of construction K, there
appear 2p(2p + 1)"~! new open intervals in [—1, 1] such that the line y = x — ¢ does
not intersect K, x K, whenever ¢t belongs to one of these intervals. If we remove the
union of these intervals from [—1, 1], the remaining Cantor set is exactly K — K, for
if ¢ belongs to this remainder, then the line y = x — ¢ intersects one of the (p + 1)%"
squares in K, x K, for every n > 1.

To compute the measure of K — K we have to know total length of intervals

appearing in the n-th step. A straightforward computation shows that this total

length is
o [(2p+1\""
— 1— 1— (1= )(2p+Da, — 1
2 (D) (1 )1 = o)+ (1= po) (29 + Do~ 1),
so that
W o= 2p+ 1\
K-K)y=2— —— 1— (1= )(2p+ Da, — 1).

= (1)

Therefore the problem reduces to the careful determination of the index «.
Choose an arbitrary sequence {v,} such that 0 < 7, < (%)n_l (2—o0) forn > 2
and > 7 7, =2 — 0. Define

p+1 n 1
o= ———— ——
LT pepr ) M p
Then
1)(2 — 1 1 1
o < PHVC—0) _1 ot
2p+ 1 2p(2p + 1) 2p+1 p  2p(2p+1)
2(2p+1
so that (1 —pay)~! < M Having defined aq, -, a1, put
olp+1)
1 /(p+1\" . L 1
L= 1— (1= pay,_1) M, . 2
awim 5 (257 (mpa) o (= py) ik oy 2
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Then we have

1 1 I\" /22p4+ 1D)\"" foyn-1 1
<o < o (ZELY (PEEDY (Y ooy
2p+1 2p \ 2p+1 olp+1) 2 2p+1
(p+1)(2-0) 1
2p(2p + 1) 2p+ 1’

so that

o Lo+l
2p+ 1 " Tp 2p(2p+1)

(3)

Thus the inductive definition (2) proceeds in such a way that (3) always holds. From
(2) it is clear that

2p (2p~|— 1

n—1
1—pay)--- (1= pan_1) (2p + Ve — 1) = 4,
(L) pan) (- o) (@ Doy~ 1) =

so that m(K — K) = o by (1) and the choice of ~,,. O

Remarks.

(i) For an affine Cantor set of type K («,p) one must have o; = ¢ for j > 1. From
(1) it can be easily seen that in such a case (whenever 1/(2p + 1) < ¢ < 1/p) we
have m(K — K) = 0, so this construction cannot yield an affine Cantor set with
self-difference of positive measure. Similarly, m(K — K) = 0 even if we impose the
condition a;; = ¢ for j > some n.

(ii) The Cantor set constructed in the above proof has Hausdorff dimension< 1,
which is a necessary condition for K to be dynamically defined. In fact if € > 0 and
N (K) is the minimal number of intervals of length € needed to cover K, then one
has [2]

HD(K) < liminf 280
—0 —loge
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1 — pas

But by the construction it is clear that N, (K) = (p+1)", where ¢, = [[/_, ( fiy] ) :
p

Therefore

log NEn (K)

—loge,
nlog(p + 1)
nlog(p+1) — 377 log(1 — pa;)
nlog(p + 1)

nlog(p +1) — nlog (;;%)

HD(K) <liminf,

= liminf,,_

< liminf,_

log(p + 1)
- log(2p+ 1)
However, for K to be dynamically defined we need «, to converge very fast to
1/(2p + 1). This is possible by the following

Lemma 1. The index o of K(a,p) in Theorem 1 can be chosen such that o, de-

creases geometrically to 1/(2p + 1) as fast as we desire.

Proof. Choose the sequence {7,} such that 0 < ~, < (%)V(nfl) (2—o0) for n > 2,
where v is an arbitrary real > 1, v, < $9n—1, and > >°, 7, =2 — 0. Then the index
a can be constructed by exactly the same method so that (2) and (3) still hold, but

now (2) shows that

g _ L (r*l ' — “1...(1 = -1
BT 7 <2p+1) (1= pan) (1 = pan—1)""7m
1 /p+1\" [22p+1D)\"" so\v-D
=3, N\ A= 2 _
<o (25) (A ()" e me)

(4)

1 p+1 (a)(vl)(nl)

= . — 2
% 1 (2-0)

2

and the rate of convergence can be controlled by v since 0 < ¢ < 2. Finally (2) and

(3) show that a;, < a1 since v, < §7,-1. O

Now the main result can be stated in
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Theorem 2. Among the Cantor sets constructed in Theorem 1, there are infin-
itely many dynamically defined ones whose self-difference sets have given measure

0<o<?2.

The key idea in proving Theorem 2 is that by Lemma 1 one can arrange things so
that «a,, converges very fast to 1/(2p + 1). If the rate of convergence is large enough,

i.e., if K(a,p) is closely similar to affine K(o/,p) with o/ = (Til’ ﬁv . .), then

this K (a,p) is dynamically defined and its v is closely similar to the affine map
t— (2p+ 1)t on K(a,p).

Before proving the above theorem we need two lemmas.

Lemma 2. Suppose that ¢ > 0, § > 2p + 1. Then there exists a C* function
[ = fae:10,€¢] — [0, Be] such that
(i) f(0) =0 and f(e) = Pe,
(i) f'(t) > 2p+1,
(iii) f'(0) = f'(€) =2p+ 1 and f™M(0) = f™(e) =0 for n > 2,
(iv) Gp+ 1)t < f(1) < 2p+ )i+ (B—(2p+1))e

Proof. For t € [0, €] define

h(t) = ho(0) = exp { = (5 + %t) b
9(t) = go.lt) = / nir/ [ hi) (5)

f) = Jpe(t) = 2p+ 1)t + (B - (2p+1)) eg(t). (6)

and

Note that ¢'(t) > 0, g™ (0) = g™ (e) =0 forn > 1, and 0 < g(t) < 1. Now it is
easily verified that f has the desired properties. O

Lemma 3. With the above notation, if 0 < € < 1, we have
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(i) /E h(t)dt > (€2/30)e e,

(1) supyepo q [B/(£)] < (64/€*)e*/e.

Proof. (i) Let

5
0 telo,s— 5l

Note that if t € [§ — &, £, then
1 1 (e — 2t) € (16)2 1 30

BT (=02 (e—ny GEP 9 e &

Therefore 4 (h(t) — iz(t)) <0on [§— &, 5], so that h(t) > h(t) on 0, $]. Hence one

has
€ €/2
/ ht)dt =2 / h(t)dt
0 0
€/2 B
> / (8t
€/2—€2/30
= €2/30 e ~Ye.
- ; L 1 1\’
(ii) First we show that for ¢ € [0, ¢], h"(t) > 0. This is equivalent to B )
6 p—
2 2
il > 0, which in turn is equivalent to €(e — 2t)% > 2t(e — t)(€* + 3t* — 3et).
e —
But for ¢ € [0, g] one has
(e — 2t)* > 95 0Ty 2t(e — t)(e* + 3t — 3et)
—16 T 256 .

This being so, we have
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Since h(t) = h(e — t), the result follows. O

Now we are ready to prove Theorem 2. Recall that we can write K = K(«a,p) as
K = ﬂ K, where Ky = [0, 1] and K, is defined as in section 2.
n>0
Proof of Theorem 2. Fix p > 1 and consider a K(«,p) as in Theorem 1. By
Lemma 1 we can select the index « so that «,, decreases geometrically to 1/(2p + 1)

at a rate v > 1 to be carefully chosen later.

Decompose K, from the left to the right into its connected components K}, K2 - | K"
. " 1 —pa; )
where each K}, := [\, ;, jin ;] is a closed interval of length e, := [/, ( +p1] . Sim-
p

ilarly, decompose K, _1\K, from the left to the right into its connected components

n—1 .
H H? ... CHPPHUT Ghere each HJ is an open interval of length €/, := a,e,_1. Set

1 n— o
B = (1]9 + ) and ¢, 1= (a 1) Bn—1. From (3) and Lemma 1 it is clear that
— pay, a

n

& 2p+1), Gu> By (7)

2p+1< B, < —
g

We want to show that K is a dynamically defined Cantor set with basis K{, KZ,--- |
K? 1 Evidently it suffices to construct 1 on K L, for then we can repeat this ¢» on

every K7J. Define a sequence {1, }n>1 of C* functions on K} = [0, ¢;] as follows: Set
V1= fp,e, ON Ki,
bl®) = { fones(t =Dag) + 20y t€ K3, 1 <j<p+l
fore(t —paj) iy te€H;, 1<j<p,
and define 1, for n > 3 as

Yn-1(1) t € Ki\K,
Un(t) = 9 foneat = Ang) + Anry  t €KY, 1<j<(p+1)""
fone, (= png) + pn—1;  t € H, 1<j<plp+1)"2 (8
Clearly each 1, maps K| onto [0,1] in a C* way, v, is strictly increasing, ¥/ (t) >

2p+ 1, and

Ym(KI) =K/ | for 1<j<(p+1)"'and m>n, (9)
Ym(H2) = H? | for 1 <j<plp+1)"2and m>n. (10)
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Fix some n > 2. We are going to estimate the difference |4/ ; — ¢//| on K{. Since

v = I on K{\K, by (8), it suffices to estimate this difference on K, N K{.
Evidently

sup |4 (1) — 45 (1)| = sup |4 (8) — 5 (0)]-

teKnNK{

But for t € K! = [0, ¢,] we have
W] = 115, . ()] (by(8))
= (Bn = (2p+1))enlgs, ., (O] (by(6))

G- D)en,
= e o ouea ] 00(3) "

L, — (2p+1))e, 64
G e v (o lemmna()

(const.) (6, — (2p + 1))

On the other hand, €, = H?:l ﬁj’l > (%)n (2p+1)7" by (7), and

m—mwn::@«Lﬂ%+WLm%»

p+1
< EM((QP_H)@ _1)
= 5 p+ 1 n
(2p+1) (a)l/(n—l)
< — 2—0). by (4
< PED(OY" V0 0) byl
Hence we have
" o\ v(n—1)-3n 3

SUprek [Pnt)| < (const.) <—) (2p+1)°"

< (const.) <%>(V_3)n (2p+1)*" -
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Now we estimate [¢// ;| on K. First suppose that t € K} ;. Then

o\ (v=3)n n
UL a O = 1Ff 0 ] < (const) (5) 7 2+1)° (13)
by (12). Next suppose that ¢ € H} ;. Then since a,, > a1 > 1/(2p+ 1),
W] = 1 O

(const.) (Cn1 — (2p + 1))

< by(11
: I (D)
(const.) ay, Qpt1
= 5. G — (2p+1)
Opy1€n Ontl Qn
(14)
< (const.) (B — (2p+1)) + (const.)(2 cn(1- Qi1
(v=3)n
< (const.) (%) (2p +1)3.
From (13) and (14) we have
sy [V (D] = max {supyeger | [0 (0] supiesy 1004, (0]}
(v=3)n
< (const.) <%> (2p + 1) (15)

Now take v > 1 so large that 7 := (%)V_?’ (2p+1)® < 1. Two estimates (12) and (15)
will then show that

sup (¢, (8) = ¥5(8)] < (const.) 7",
teK]

However this means that {¢/'} is uniformly convergent. Since {¢/} converges in at
least one point (say ¢=0), we conclude that {¢/} is uniformly convergent. Again
since {1, } converges in at least one point, {t,} will converge uniformly on K to
a mapping ¢ which is clearly (at least) C?. Moreover, ¢ maps K; onto [0,1] and
Y'(t) > 2p+ 1. Repeating this 1) on every K7 we obtain the required mapping (also
denoted by ). Finally (9) and (10) show that (K7) = K | for 1 < j < (p+1)"
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and Y(HJ) = H) | for 1 <j < p(p+1)"~',n > 1. From this it can be checked that
Y™ "(K}) = K,;1, and we are done. O

§4. Final Remark. While the above proof gives sufficient conditions on K («,p) to

be dynamically defined, it is interesting to answer the following

Problem. Given p > 1, find necessary and sufficient conditions on the index «

which guarantee K (o, p) is dynamically defined.

References

[1 ] K.J. Falconer, The Geometry of Fractal Sets, Cambridge University Press,
1985.

[2 ] J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at
Homoclinic Bifurcations, Cambridge University Press, 1992.

[3 ] A. Sannami, An ezample of a reqular Cantor set whose difference is a Cantor

set with positive measure, Hokkaido Math. J., to appear.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEHRAN, TEHRAN, IRAN



