ON ARITHMETICAL DIFFERENCE OF TWO CANTOR SETS

SAEED ZAKERI

ABSTRACT. We construct a large class of dynamically defined Cantor sets on the real line whose self-difference sets are Cantor sets of arbitrary positive measure. This relates to a question posed by J. Palis which arises naturally in the context of homoclinic bifurcations in dimension 2.

§1. Introduction. An interesting theorem of Steinhaus [1] asserts that if A and B are measurable subsets of some \mathbb{R}^k with positive measure, then their arithmetical difference A - B (hence their sum) contains an open ball. There are many sets of measure zero, however, such that their difference sets also contain an open ball. For example, it is well-known that K - K = [-1, 1], where $K \subset [0, 1]$ is the classical middle-third Cantor set. In fact, the problem of investigating properties of A - B where A and B have measure zero is much more challenging.

In [2], J. Palis proposes some problems concerning difference set of Cantor sets on the real line. One of them is:

Problem. Let K_1 and K_2 be two 'affine' (to be defined below) Cantor sets in **R**. Is it true that $K_1 - K_2$ has measure zero or else contains an interval? Is the same conclusion true for 'dynamically defined' (to be defined below) Cantor sets?

The purpose of this note is to give a general counterexample to the second question above. While completing this paper, I was informed that the same problem is solved independently by Sannami [3]. Apparently the first question is still open.

§2. Preliminaries and Notation. Let $0 = a_0 < a_1 < \cdots < a_{2m+1} = 1$ be a partition of [0,1] with $m \ge 1$. Set $E_j = [a_{2j}, a_{2j+1}], 0 \le j \le m$. By definition, a

Date: May 1992.

S. ZAKERI

dynamically defined Cantor set K with basis $E_0 \cup \cdots \cup E_m$ is $\bigcap_{n\geq 0} \psi^{-n}(E_0 \cup \cdots \cup E_m)$, where $\psi: E_0 \cup \cdots \cup E_m \longrightarrow [0, 1]$ is a $C^{1+\alpha}$ function, $\alpha > 0$, and $\psi|E_j$ is an expanding map onto [0,1]. Therefore a dynamically defined Cantor set is determined by a finite collection of disjoint closed intervals in [0,1] and a $C^{1+\alpha}$ expanding map on this collection onto [0,1].

A dynamically defined Cantor set is called *affine* if the restriction of ψ to each E_j is affine, i.e., $(\psi|E_j)'' = 0$. In other words, an affine Cantor set is obtained by first removing a finite number of open intervals in [0,1], then applying the same surgery on each of the remaining intervals by a *linear* change of scale, and so on.

For our purposes, we shall be primarily concerned with a special class of Cantor sets. Strictly speaking, for every integer $p \ge 1$ and every sequence $\alpha = (\alpha_1, \alpha_2, \cdots)$ of real numbers with $0 < \alpha_j < 1/p$, the middle *p*-Cantor set with index α , $K(\alpha, p)$, is defined as follows: First remove from [0,1] its *p* 'middle' open intervals each of length α_1 , and denote the remainder by K_1 . Next remove from each connected component of K_1 , say *J*, its *p* 'middle' open intervals each of length $\alpha_2 \cdot m(J)$, and denote the remainder by K_2 , an so on. Then $K(\alpha, p) := \bigcap_{n\ge 1} K_n$. For example, the classical middle third Cantor set is $K(\alpha, 1)$, where $\alpha = (\frac{1}{3}, \frac{1}{3}, \cdots)$. A nontrivial question about these Cantor sets is to find conditions on the index α under which $K(\alpha, p)$ is dynamically defined. Evidently $K(\alpha, p)$ is affine iff $\alpha_1 = \alpha_2 = \cdots = \alpha_n = \cdots$.

In the next section we first construct a class of $K(\alpha, p)$'s whose self-difference sets have positive measure yet containing no open intervals. Next we determine conditions on the index α such that $K(\alpha, p)$ is dynamically defined. The fact that such α 's exist gives a negative answer to the second question mentioned in the first section.

§3. Main Result. First of all we prove the following

Theorem 1. Given $p \ge 1$ there exist infinitely many indices α for which the selfdifference set of $K = K(\alpha, p)$ is a Cantor set with any given measure $0 < \sigma < 2$.

Proof. That $t \in K - K$ means the line y = x - t in \mathbb{R}^2 intersects $K \times K$ (it is evident that $K - K \subset [-1, 1]$). Choose α in such a way that $1/(2p + 1) < \alpha_j < 1/p$

for every $j \ge 1$. In each step of constructing K, there appear finitely many open intervals in [-1, 1] such that if t belongs to one of these intervals, then the line y = x - tdoes not intersect $K \times K$. More precisely, in the *n*-th step of construction K, there appear $2p(2p+1)^{n-1}$ new open intervals in [-1, 1] such that the line y = x - t does not intersect $K_n \times K_n$ whenever t belongs to one of these intervals. If we remove the union of these intervals from [-1, 1], the remaining Cantor set is exactly K - K, for if t belongs to this remainder, then the line y = x - t intersects one of the $(p+1)^{2n}$ squares in $K_n \times K_n$ for every $n \ge 1$.

To compute the measure of K - K we have to know total length of intervals appearing in the *n*-th step. A straightforward computation shows that this total length is

$$\frac{2p}{p+1} \left(\frac{2p+1}{p+1}\right)^{n-1} (1-p\alpha_1)(1-p\alpha_2) \cdots (1-p\alpha_{n-1})((2p+1)\alpha_n-1),$$

so that

$$m(K-K) = 2 - \frac{2p}{p+1} \sum_{n=1}^{\infty} \left(\frac{2p+1}{p+1}\right)^{n-1} (1-p\alpha_1) \cdots (1-p\alpha_{n-1})((2p+1)\alpha_n - 1).$$
(1)

Therefore the problem reduces to the careful determination of the index α .

Choose an arbitrary sequence $\{\gamma_n\}$ such that $0 < \gamma_n < \left(\frac{\sigma}{2}\right)^{n-1} (2-\sigma)$ for $n \ge 2$ and $\sum_{n=1}^{\infty} \gamma_n = 2 - \sigma$. Define

$$\alpha_1 := \frac{p+1}{2p(2p+1)} \gamma_1 + \frac{1}{2p+1}$$

Then

$$\frac{1}{2p+1} < \alpha_1 < \frac{(p+1)(2-\sigma)}{2p(2p+1)} + \frac{1}{2p+1} = \frac{1}{p} - \frac{\sigma(p+1)}{2p(2p+1)},$$

so that $(1 - p\alpha_1)^{-1} < \frac{2(2p+1)}{\sigma(p+1)}$. Having defined $\alpha_1, \dots, \alpha_{n-1}$, put

$$\alpha_n := \frac{1}{2p} \left(\frac{p+1}{2p+1} \right)^n (1 - p\alpha_1)^{-1} \cdots (1 - p\alpha_{n-1})^{-1} \gamma_n + \frac{1}{2p+1}.$$
 (2)

Then we have

$$\frac{1}{2p+1} < \alpha_n < \frac{1}{2p} \left(\frac{p+1}{2p+1}\right)^n \left(\frac{2(2p+1)}{\sigma(p+1)}\right)^{n-1} \left(\frac{\sigma}{2}\right)^{n-1} (2-\sigma) + \frac{1}{2p+1}$$
$$= \frac{(p+1)(2-\sigma)}{2p(2p+1)} + \frac{1}{2p+1},$$

so that

$$\frac{1}{2p+1} < \alpha_n < \frac{1}{p} - \frac{\sigma(p+1)}{2p(2p+1)}.$$
(3)

Thus the inductive definition (2) proceeds in such a way that (3) always holds. From (2) it is clear that

$$\frac{2p}{p+1} \left(\frac{2p+1}{p+1}\right)^{n-1} (1-p\alpha_1) \cdots (1-p\alpha_{n-1}) \left((2p+1)\alpha_n - 1\right) = \gamma_n,$$

so that $m(K - K) = \sigma$ by (1) and the choice of γ_n . \Box

Remarks.

(i) For an affine Cantor set of type $K(\alpha, p)$ one must have $\alpha_j = c$ for $j \ge 1$. From (1) it can be easily seen that in such a case (whenever 1/(2p + 1) < c < 1/p) we have m(K - K) = 0, so this construction cannot yield an affine Cantor set with self-difference of positive measure. Similarly, m(K - K) = 0 even if we impose the condition $\alpha_j = c$ for $j \ge$ some n.

(ii) The Cantor set constructed in the above proof has Hausdorff dimension < 1, which is a necessary condition for K to be dynamically defined. In fact if $\epsilon > 0$ and $N_{\epsilon}(K)$ is the minimal number of intervals of length ϵ needed to cover K, then one has [2]

$$HD(K) \le \liminf_{\epsilon \to 0} \frac{\log N_{\epsilon}(K)}{-\log \epsilon}.$$

4

But by the construction it is clear that $N_{\epsilon_n}(K) = (p+1)^n$, where $\epsilon_n = \prod_{j=1}^n \left(\frac{1-p\alpha_j}{p+1}\right)$. Therefore

$$HD(K) \leq \liminf_{n \to \infty} \frac{\log N_{\epsilon_n}(K)}{-\log \epsilon_n}$$

=
$$\liminf_{n \to \infty} \frac{n \log(p+1)}{n \log(p+1) - \sum_{j=1}^n \log(1 - p\alpha_j)}$$

$$\leq \liminf_{n \to \infty} \frac{n \log(p+1)}{n \log(p+1) - n \log\left(\frac{p+1}{2p+1}\right)}$$

=
$$\frac{\log(p+1)}{\log(2p+1)}.$$

However, for K to be dynamically defined we need α_n to converge very fast to 1/(2p+1). This is possible by the following

Lemma 1. The index α of $K(\alpha, p)$ in Theorem 1 can be chosen such that α_n decreases geometrically to 1/(2p+1) as fast as we desire.

Proof. Choose the sequence $\{\gamma_n\}$ such that $0 < \gamma_n < \left(\frac{\sigma}{2}\right)^{\nu(n-1)} (2-\sigma)$ for $n \ge 2$, where ν is an arbitrary real > 1, $\gamma_n < \frac{\sigma}{2}\gamma_{n-1}$, and $\sum_{n=1}^{\infty}\gamma_n = 2 - \sigma$. Then the index α can be constructed by exactly the same method so that (2) and (3) still hold, but now (2) shows that

$$\alpha_{n} - \frac{1}{2p+1} = \frac{1}{2p} \left(\frac{p+1}{2p+1} \right)^{n} (1 - p\alpha_{1})^{-1} \cdots (1 - p\alpha_{n-1})^{-1} \gamma_{n}$$

$$\leq \frac{1}{2p} \left(\frac{p+1}{2p+1} \right)^{n} \cdot \left(\frac{2(2p+1)}{\sigma(p+1)} \right)^{n-1} \cdot \left(\frac{\sigma}{2} \right)^{\nu(n-1)} (2 - \sigma) \qquad (by(3))$$

$$= \frac{1}{2p} \cdot \frac{p+1}{2p+1} \left(\frac{\sigma}{2} \right)^{(\nu-1)(n-1)} (2 - \sigma) \qquad (4)$$

and the rate of convergence can be controlled by ν since $0 < \sigma < 2$. Finally (2) and (3) show that $\alpha_n < \alpha_{n-1}$ since $\gamma_n < \frac{\sigma}{2}\gamma_{n-1}$. \Box

Now the main result can be stated in

S. Zakeri

Theorem 2. Among the Cantor sets constructed in Theorem 1, there are infinitely many dynamically defined ones whose self-difference sets have given measure $0 < \sigma < 2$.

The key idea in proving Theorem 2 is that by Lemma 1 one can arrange things so that α_n converges very fast to 1/(2p+1). If the rate of convergence is large enough, i.e., if $K(\alpha, p)$ is closely similar to affine $K(\alpha', p)$ with $\alpha' = \left(\frac{1}{2p+1}, \frac{1}{2p+1}, \ldots\right)$, then this $K(\alpha, p)$ is dynamically defined and its ψ is closely similar to the affine map $t \mapsto (2p+1)t$ on $K(\alpha, p)$.

Before proving the above theorem we need two lemmas.

Lemma 2. Suppose that $\epsilon > 0$, $\beta > 2p + 1$. Then there exists a C^{∞} function $f = f_{\beta,\epsilon} : [0,\epsilon] \to [0,\beta\epsilon]$ such that

- (i) f(0) = 0 and $f(\epsilon) = \beta \epsilon$,
- (ii) $f'(t) \ge 2p + 1$,
- (iii) $f'(0) = f'(\epsilon) = 2p + 1$ and $f^{(n)}(0) = f^{(n)}(\epsilon) = 0$ for $n \ge 2$,
- (iv) $(2p+1)t \le f(t) \le (2p+1)t + (\beta (2p+1))\epsilon$.

Proof. For $t \in [0, \epsilon]$ define

$$h(t) = h_{\beta,\epsilon}(t) := \exp\left\{-\left(\frac{1}{t} + \frac{1}{\epsilon - t}\right)\right\},$$
$$g(t) = g_{\beta,\epsilon}(t) := \int_0^t h(\tau)d\tau / \int_0^\epsilon h(\tau)d\tau,$$
(5)

and

$$f(t) = f_{\beta,\epsilon}(t) := (2p+1)t + (\beta - (2p+1))\epsilon g(t).$$
(6)

Note that $g'(t) \ge 0$, $g^{(n)}(0) = g^{(n)}(\epsilon) = 0$ for $n \ge 1$, and $0 \le g(t) \le 1$. Now it is easily verified that f has the desired properties. \Box

Lemma 3. With the above notation, if $0 < \epsilon < 1$, we have

(i)
$$\int_{0}^{\epsilon} h(t)dt \ge (\epsilon^{2}/30)e^{-4/\epsilon}$$
,
(ii) $\sup_{t \in [0,\epsilon]} |h'(t)| \le (64/\epsilon^{2})e^{-4/\epsilon}$.

Proof. (i) Let

$$\tilde{h}(t) := \begin{cases} (30/\epsilon^2)e^{-4/\epsilon} \left(t - \left(\frac{\epsilon}{2} - \frac{\epsilon^2}{30}\right) \right) & t \in \left[\frac{\epsilon}{2} - \frac{\epsilon^2}{30}, \frac{\epsilon}{2}\right] \\ 0 & t \in \left[0, \frac{\epsilon}{2} - \frac{\epsilon^2}{30}\right] \end{cases}$$

Note that if $t \in \left[\frac{\epsilon}{2} - \frac{\epsilon^2}{30}, \frac{\epsilon}{2}\right]$, then

$$\frac{1}{t^2} - \frac{1}{(\epsilon - t)^2} = \frac{\epsilon(\epsilon - 2t)}{(t(\epsilon - t))^2} < \frac{\epsilon^2}{(\frac{\epsilon}{4} \cdot \frac{3\epsilon}{4})^2} = \frac{(16)^2}{9} \cdot \frac{1}{\epsilon^2} < \frac{30}{\epsilon^2}$$

Therefore $\frac{d}{dt}\left(h(t) - \tilde{h}(t)\right) \leq 0$ on $\left[\frac{\epsilon}{2} - \frac{\epsilon^2}{30}, \frac{\epsilon}{2}\right]$, so that $h(t) \geq \tilde{h}(t)$ on $[0, \frac{\epsilon}{2}]$. Hence one has

$$\int_0^{\epsilon} h(t)dt = 2\int_0^{\epsilon/2} h(t)dt$$

$$\geq 2 \int_{\epsilon/2-\epsilon^2/30}^{\epsilon/2} \tilde{h}(t) dt$$

$$=\epsilon^2/30 \ e^{-4/\epsilon}.$$

(ii) First we show that for $t \in [0, \frac{\epsilon}{8}]$, $h''(t) \ge 0$. This is equivalent to $\left(\frac{1}{t^2} - \frac{1}{(\epsilon - t)^2}\right)^2 - \frac{2}{t^3} - \frac{2}{(\epsilon - t)^3} \ge 0$, which in turn is equivalent to $\epsilon(\epsilon - 2t)^2 \ge 2t(\epsilon - t)(\epsilon^2 + 3t^2 - 3\epsilon t)$. But for $t \in [0, \frac{\epsilon}{8}]$ one has

$$\epsilon(\epsilon - 2t)^2 \ge \frac{9}{16}\epsilon^3 \ge \frac{67}{256}\epsilon^4 \ge 2t(\epsilon - t)(\epsilon^2 + 3t^2 - 3\epsilon t).$$

This being so, we have

$$\sup_{t\in[0,\epsilon/8]} h'(t) = h'(\frac{\epsilon}{8}) = \left(\frac{64}{\epsilon^2} - \frac{64}{49\epsilon^2}\right) e^{-\left(\frac{8}{\epsilon} + \frac{8}{7\epsilon}\right)}.$$

On the other hand, on $\left[\frac{\epsilon}{8},\frac{\epsilon}{2}\right]$ we have

$$0 \le h'(t) \le \left(\frac{64}{\epsilon^2} - \frac{64}{49\epsilon^2}\right) e^{-4/\epsilon}.$$

Since $h(t) = h(\epsilon - t)$, the result follows. \Box

Now we are ready to prove Theorem 2. Recall that we can write $K = K(\alpha, p)$ as $K = \bigcap_{n \ge 0} K_n$, where $K_0 = [0, 1]$ and K_n is defined as in section 2.

Proof of Theorem 2. Fix $p \ge 1$ and consider a $K(\alpha, p)$ as in Theorem 1. By Lemma 1 we can select the index α so that α_n decreases geometrically to 1/(2p+1)at a rate $\nu > 1$ to be carefully chosen later.

Decompose K_n from the left to the right into its connected components $K_n^1, K_n^2, \cdots, K_n^{(p+1)^n}$, where each $K_n^j := [\lambda_{n,j}, \mu_{n,j}]$ is a closed interval of length $\epsilon_n := \prod_{j=1}^n \left(\frac{1-p\alpha_j}{p+1}\right)$. Similarly, decompose $K_{n-1} \setminus K_n$ from the left to the right into its connected components $H_n^1, H_n^2, \ldots, H_n^{p(p+1)^{n-1}}$, where each H_n^j is an open interval of length $\epsilon'_n := \alpha_n \epsilon_{n-1}$. Set $\beta_n := \left(\frac{p+1}{1-p\alpha_n}\right)$ and $\zeta_n := \left(\frac{\alpha_{n-1}}{\alpha_n}\right) \beta_{n-1}$. From (3) and Lemma 1 it is clear that $2p+1 < \beta_n < \frac{2}{\sigma}(2p+1)$, $\zeta_n > \beta_n$. (7)

We want to show that K is a dynamically defined Cantor set with basis $K_1^1, K_1^2, \cdots, K_1^{p+1}$. Evidently it suffices to construct ψ on K_1^1 , for then we can repeat this ψ on every K_1^j . Define a sequence $\{\psi_n\}_{n\geq 1}$ of C^{∞} functions on $K_1^1 = [0, \epsilon_1]$ as follows: Set $\psi_1 = f_{\beta_1, \epsilon_1}$ on K_1^1 ,

$$\psi_2(t) = \begin{cases} f_{\beta_2,\epsilon_2}(t-\lambda_{2,j}) + \lambda_{1,j} & t \in K_2^j, \ 1 \le j \le p+1 \\ f_{\zeta_2,\epsilon'_2}(t-\mu_{2,j}) + \mu_{1,j} & t \in H_2^j, \ 1 \le j \le p, \end{cases}$$

and define ψ_n for $n \geq 3$ as

$$\psi_n(t) = \begin{cases} \psi_{n-1}(t) & t \in K_1^1 \backslash K_{n-1} \\ f_{\beta_n,\epsilon_n}(t-\lambda_{n,j}) + \lambda_{n-1,j} & t \in K_n^j, & 1 \le j \le (p+1)^{n-1} \\ f_{\zeta_n,\epsilon'_n}(t-\mu_{n,j}) + \mu_{n-1,j} & t \in H_n^j, & 1 \le j \le p(p+1)^{n-2}. \end{cases}$$
(8)

Clearly each ψ_n maps K_1^1 onto [0,1] in a C^{∞} way, ψ_n is strictly increasing, $\psi'_n(t) \ge 2p+1$, and

$$\psi_m(K_n^j) = K_{n-1}^j \text{ for } 1 \le j \le (p+1)^{n-1} \text{ and } m \ge n,$$
(9)

$$\psi_m(H_n^j) = H_{n-1}^j \text{ for } 1 \le j \le p(p+1)^{n-2} \text{ and } m \ge n.$$
 (10)

Fix some $n \geq 2$. We are going to estimate the difference $|\psi_{n+1}'' - \psi_n''|$ on K_1^1 . Since $\psi_{n+1}'' = \psi_n''$ on $K_1^1 \setminus K_n$ by (8), it suffices to estimate this difference on $K_n \cap K_1^1$. Evidently

$$\sup_{t \in K_n \cap K_1^1} |\psi_{n+1}''(t) - \psi_n''(t)| = \sup_{t \in K_n^1} |\psi_{n+1}''(t) - \psi_n''(t)|.$$

But for $t \in K_n^1 = [0, \epsilon_n]$ we have

$$\begin{aligned} |\psi_{n}''(t)| &= |f_{\beta_{n},\epsilon_{n}}''(t)| & (by(8)) \\ &= (\beta_{n} - (2p+1))\epsilon_{n}|g_{\beta_{n},\epsilon_{n}}''(t)| & (by(6)) \\ &= \frac{(\beta_{n} - (2p+1))\epsilon_{n}}{\int_{0}^{\epsilon_{n}}h_{\beta_{n},\epsilon_{n}}(t)dt}|h_{\beta_{n},\epsilon_{n}}'(t)| & (by(5)) \\ &\leq \frac{(\beta_{n} - (2p+1))\epsilon_{n}}{(\epsilon_{n}^{2}/30)e^{-4/\epsilon_{n}}} \cdot \frac{64}{\epsilon_{n}^{2}}e^{-4/\epsilon_{n}} & (by\ lemma(3)) \\ &= \frac{(\operatorname{const.})(\beta_{n} - (2p+1))}{\epsilon_{n}^{3}}. \end{aligned}$$

On the other hand, $\epsilon_n = \prod_{j=1}^n \beta_j^{-1} \ge \left(\frac{\sigma}{2}\right)^n (2p+1)^{-n}$ by (7), and

$$\beta_n - (2p+1) = \beta_n \left(1 - \frac{(2p+1)(1-p\alpha_n)}{p+1} \right)$$

$$\leq \frac{2}{\sigma} \frac{p(2p+1)}{p+1} \left((2p+1)\alpha_n - 1 \right)$$

$$\leq \frac{(2p+1)}{\sigma} \left(\frac{\sigma}{2} \right)^{\nu(n-1)} (2-\sigma). \quad (by(4))$$

Hence we have

$$\sup_{t \in K_n^1} |\psi_n''t| \leq (\text{const.}) \left(\frac{\sigma}{2}\right)^{\nu(n-1)-3n} (2p+1)^{3n} \\ \leq (\text{const.}) \left(\frac{\sigma}{2}\right)^{(\nu-3)n} (2p+1)^{3n}.$$
(12)

S. Zakeri

Now we estimate $|\psi_{n+1}'|$ on K_n^1 . First suppose that $t \in K_{n+1}^1$. Then

$$|\psi_{n+1}''(t)| = |f_{\beta_{n+1},\epsilon_{n+1}}''(t)| \le (\text{const.}) \left(\frac{\sigma}{2}\right)^{(\nu-3)n} (2p+1)^{3n}$$
(13)

by (12). Next suppose that $t \in H_{n+1}^1$. Then since $\alpha_n > \alpha_{n+1} > 1/(2p+1)$,

$$\begin{aligned} |\psi_{n+1}'(t)| &= |f_{\zeta_{n+1},\epsilon_{n+1}'}'(t)| \\ &\leq \frac{(\text{const.}) \left(\zeta_{n+1} - (2p+1)\right)}{(\epsilon_{n+1}')^3} \qquad (by(11)) \\ &= \frac{(\text{const.})}{\alpha_{n+1}^3} \cdot \frac{\alpha_n}{\alpha_{n+1}} \left(\beta_n - \frac{\alpha_{n+1}}{\alpha_n}(2p+1)\right) \\ &\leq \frac{(\text{const.})}{\epsilon_n^3} \left(\beta_n - (2p+1)\right) + \frac{(\text{const.})}{\epsilon_n^3} (2p+1) \left(1 - \frac{\alpha_{n+1}}{\alpha_n}\right) \\ &\leq (\text{const.}) \left(\frac{\sigma}{2}\right)^{(\nu-3)n} (2p+1)^{3n}. \end{aligned}$$

From (13) and (14) we have

$$\sup_{t \in K_n^1} |\psi_{n+1}''(t)| = \max \left\{ \sup_{t \in K_{n+1}^1} |\psi_{n+1}''(t)|, \sup_{t \in H_{n+1}^1} |\psi_{n+1}''(t)| \right\}$$

$$\leq (\text{const.}) \left(\frac{\sigma}{2}\right)^{(\nu-3)n} (2p+1)^{3n}.$$
(15)

Now take $\nu > 1$ so large that $\tau := \left(\frac{\sigma}{2}\right)^{\nu-3} (2p+1)^3 < 1$. Two estimates (12) and (15) will then show that

$$\sup_{t \in K_1^1} |\psi_{n+1}''(t) - \psi_n''(t)| \le (\text{const.}) \ \tau^n.$$

However this means that $\{\psi''_n\}$ is uniformly convergent. Since $\{\psi'_n\}$ converges in at least one point (say t=0), we conclude that $\{\psi'_n\}$ is uniformly convergent. Again since $\{\psi_n\}$ converges in at least one point, $\{\psi_n\}$ will converge uniformly on K_1^1 to a mapping ψ which is clearly (at least) C^2 . Moreover, ψ maps K_1^1 onto [0,1] and $\psi'(t) \ge 2p + 1$. Repeating this ψ on every K_1^j we obtain the required mapping (also denoted by ψ). Finally (9) and (10) show that $\psi(K_n^j) = K_{n-1}^j$ for $1 \le j \le (p+1)^n$ and $\psi(H_n^j) = H_{n-1}^j$ for $1 \le j \le p(p+1)^{n-1}, n \ge 1$. From this it can be checked that $\psi^{-n}(K_1) = K_{n+1}$, and we are done. \Box

§4. Final Remark. While the above proof gives sufficient conditions on $K(\alpha, p)$ to be dynamically defined, it is interesting to answer the following

Problem. Given $p \ge 1$, find necessary and sufficient conditions on the index α which guarantee $K(\alpha, p)$ is dynamically defined.

References

- K.J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985.
- [2] J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge University Press, 1992.
- [3] A. Sannami, An example of a regular Cantor set whose difference is a Cantor set with positive measure, Hokkaido Math. J., to appear.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF TEHRAN, TEHRAN, IRAN