ON ARITHMETICAL DIFFERENCE OF TWO CANTOR SETS

SAEED ZAKERI

Abstract

We construct a large class of dynamically defined Cantor sets on the real line whose self-difference sets are Cantor sets of arbitrary positive measure. This relates to a question posed by J. Palis which arises naturally in the context of homoclinic bifurcations in dimension 2 .

§1. Introduction. An interesting theorem of Steinhaus [1] asserts that if A and B are measurable subsets of some \mathbb{R}^{k} with positive measure, then their arithmetical difference $A-B$ (hence their sum) contains an open ball. There are many sets of measure zero, however, such that their difference sets also contain an open ball. For example, it is well-known that $K-K=[-1,1]$, where $K \subset[0,1]$ is the classical middle-third Cantor set. In fact, the problem of investigating properties of $A-B$ where A and B have measure zero is much more challenging.

In [2], J. Palis proposes some problems concerning difference set of Cantor sets on the real line. One of them is:

Problem. Let K_{1} and K_{2} be two 'affine' (to be defined below) Cantor sets in \mathbf{R}. Is it true that $K_{1}-K_{2}$ has measure zero or else contains an interval? Is the same conclusion true for 'dynamically defined' (to be defined below) Cantor sets?

The purpose of this note is to give a general counterexample to the second question above. While completing this paper, I was informed that the same problem is solved independently by Sannami [3]. Apparently the first question is still open.
§2. Preliminaries and Notation. Let $0=a_{0}<a_{1}<\cdots<a_{2 m+1}=1$ be a partition of $[0,1]$ with $m \geq 1$. Set $E_{j}=\left[a_{2 j}, a_{2 j+1}\right], 0 \leq j \leq m$. By definition, a
dynamically defined Cantor set K with basis $E_{0} \cup \cdots \cup E_{m}$ is $\bigcap_{n \geq 0} \psi^{-n}\left(E_{0} \cup \cdots \cup E_{m}\right)$, where $\psi: E_{0} \cup \cdots \cup E_{m} \longrightarrow[0,1]$ is a $C^{1+\alpha}$ function, $\alpha>0$, and $\psi \mid E_{j}$ is an expanding map onto $[0,1]$. Therefore a dynamically defined Cantor set is determined by a finite collection of disjoint closed intervals in $[0,1]$ and a $C^{1+\alpha}$ expanding map on this collection onto $[0,1]$.

A dynamically defined Cantor set is called affine if the restriction of ψ to each E_{j} is affine, i.e., $\left(\psi \mid E_{j}\right)^{\prime \prime}=0$. In other words, an affine Cantor set is obtained by first removing a finite number of open intervals in $[0,1]$, then applying the same surgery on each of the remaining intervals by a linear change of scale, and so on.

For our purposes, we shall be primarily concerned with a special class of Cantor sets. Strictly speaking, for every integer $p \geq 1$ and every sequence $\alpha=\left(\alpha_{1}, \alpha_{2}, \cdots\right)$ of real numbers with $0<\alpha_{j}<1 / p$, the middle p-Cantor set with index $\alpha, K(\alpha, p)$, is defined as follows: First remove from [0,1] its p 'middle' open intervals each of length α_{1}, and denote the remainder by K_{1}. Next remove from each connected component of K_{1}, say J, its p 'middle' open intervals each of length $\alpha_{2} \cdot m(J)$, and denote the remainder by K_{2}, an so on. Then $K(\alpha, p):=\bigcap_{n \geq 1} K_{n}$. For example, the classical middle third Cantor set is $K(\alpha, 1)$, where $\alpha=\left(\frac{1}{3}, \frac{1}{3}, \cdots\right)$. A nontrivial question about these Cantor sets is to find conditions on the index α under which $K(\alpha, p)$ is dynamically defined. Evidently $K(\alpha, p)$ is affine iff $\alpha_{1}=\alpha_{2}=\cdots=\alpha_{n}=\cdots$.

In the next section we first construct a class of $K(\alpha, p)$'s whose self-difference sets have positive measure yet containing no open intervals. Next we determine conditions on the index α such that $K(\alpha, p)$ is dynamically defined. The fact that such α 's exist gives a negative answer to the second question mentioned in the first section.
§3. Main Result. First of all we prove the following

Theorem 1. Given $p \geq 1$ there exist infinitely many indices α for which the selfdifference set of $K=K(\alpha, p)$ is a Cantor set with any given measure $0<\sigma<2$.

Proof. That $t \in K-K$ means the line $y=x-t$ in \mathbb{R}^{2} intersects $K \times K$ (it is evident that $K-K \subset[-1,1])$. Choose α in such a way that $1 /(2 p+1)<\alpha_{j}<1 / p$
for every $j \geq 1$. In each step of constructing K, there appear finitely many open intervals in $[-1,1]$ such that if t belongs to one of these intervals, then the line $y=x-t$ does not intersect $K \times K$. More precisely, in the n-th step of construction K, there appear $2 p(2 p+1)^{n-1}$ new open intervals in $[-1,1]$ such that the line $y=x-t$ does not intersect $K_{n} \times K_{n}$ whenever t belongs to one of these intervals. If we remove the union of these intervals from $[-1,1]$, the remaining Cantor set is exactly $K-K$, for if t belongs to this remainder, then the line $y=x-t$ intersects one of the $(p+1)^{2 n}$ squares in $K_{n} \times K_{n}$ for every $n \geq 1$.

To compute the measure of $K-K$ we have to know total length of intervals appearing in the n-th step. A straightforward computation shows that this total length is

$$
\frac{2 p}{p+1}\left(\frac{2 p+1}{p+1}\right)^{n-1}\left(1-p \alpha_{1}\right)\left(1-p \alpha_{2}\right) \cdots\left(1-p \alpha_{n-1}\right)\left((2 p+1) \alpha_{n}-1\right)
$$

so that

$$
\begin{equation*}
m(K-K)=2-\frac{2 p}{p+1} \sum_{n=1}^{\infty}\left(\frac{2 p+1}{p+1}\right)^{n-1}\left(1-p \alpha_{1}\right) \cdots\left(1-p \alpha_{n-1}\right)\left((2 p+1) \alpha_{n}-1\right) \tag{1}
\end{equation*}
$$

Therefore the problem reduces to the careful determination of the index α.
Choose an arbitrary sequence $\left\{\gamma_{n}\right\}$ such that $0<\gamma_{n}<\left(\frac{\sigma}{2}\right)^{n-1}(2-\sigma)$ for $n \geq 2$ and $\sum_{n=1}^{\infty} \gamma_{n}=2-\sigma$. Define

$$
\alpha_{1}:=\frac{p+1}{2 p(2 p+1)} \gamma_{1}+\frac{1}{2 p+1} .
$$

Then

$$
\frac{1}{2 p+1}<\alpha_{1}<\frac{(p+1)(2-\sigma)}{2 p(2 p+1)}+\frac{1}{2 p+1}=\frac{1}{p}-\frac{\sigma(p+1)}{2 p(2 p+1)}
$$

so that $\left(1-p \alpha_{1}\right)^{-1}<\frac{2(2 p+1)}{\sigma(p+1)}$. Having defined $\alpha_{1}, \cdots, \alpha_{n-1}$, put

$$
\begin{equation*}
\alpha_{n}:=\frac{1}{2 p}\left(\frac{p+1}{2 p+1}\right)^{n}\left(1-p \alpha_{1}\right)^{-1} \cdots\left(1-p \alpha_{n-1}\right)^{-1} \gamma_{n}+\frac{1}{2 p+1} . \tag{2}
\end{equation*}
$$

Then we have

$$
\begin{aligned}
\frac{1}{2 p+1}<\alpha_{n} & <\frac{1}{2 p}\left(\frac{p+1}{2 p+1}\right)^{n}\left(\frac{2(2 p+1)}{\sigma(p+1)}\right)^{n-1}\left(\frac{\sigma}{2}\right)^{n-1}(2-\sigma)+\frac{1}{2 p+1} \\
& =\frac{(p+1)(2-\sigma)}{2 p(2 p+1)}+\frac{1}{2 p+1}
\end{aligned}
$$

so that

$$
\begin{equation*}
\frac{1}{2 p+1}<\alpha_{n}<\frac{1}{p}-\frac{\sigma(p+1)}{2 p(2 p+1)} \tag{3}
\end{equation*}
$$

Thus the inductive definition (2) proceeds in such a way that (3) always holds. From (2) it is clear that

$$
\frac{2 p}{p+1}\left(\frac{2 p+1}{p+1}\right)^{n-1}\left(1-p \alpha_{1}\right) \cdots\left(1-p \alpha_{n-1}\right)\left((2 p+1) \alpha_{n}-1\right)=\gamma_{n}
$$

so that $m(K-K)=\sigma$ by (1) and the choice of γ_{n}.

Remarks.

(i) For an affine Cantor set of type $K(\alpha, p)$ one must have $\alpha_{j}=c$ for $j \geq 1$. From (1) it can be easily seen that in such a case (whenever $1 /(2 p+1)<c<1 / p)$ we have $m(K-K)=0$, so this construction cannot yield an affine Cantor set with self-difference of positive measure. Similarly, $m(K-K)=0$ even if we impose the condition $\alpha_{j}=c$ for $j \geq$ some n.
(ii) The Cantor set constructed in the above proof has Hausdorff dimension <1, which is a necessary condition for K to be dynamically defined. In fact if $\epsilon>0$ and $N_{\epsilon}(K)$ is the minimal number of intervals of length ϵ needed to cover K, then one has [2]

$$
H D(K) \leq \liminf _{\epsilon \rightarrow 0} \frac{\log N_{\epsilon}(K)}{-\log \epsilon}
$$

But by the construction it is clear that $N_{\epsilon_{n}}(K)=(p+1)^{n}$, where $\epsilon_{n}=\prod_{j=1}^{n}\left(\frac{1-p \alpha_{j}}{p+1}\right)$. Therefore

$$
\begin{aligned}
H D(K) & \leq \liminf _{n \rightarrow \infty} \frac{\log N_{\epsilon_{n}}(K)}{-\log \epsilon_{n}} \\
& =\liminf _{n \rightarrow \infty} \frac{n \log (p+1)}{n \log (p+1)-\sum_{j=1}^{n} \log \left(1-p \alpha_{j}\right)} \\
& \leq \liminf _{n \rightarrow \infty} \frac{n \log (p+1)}{n \log (p+1)-n \log \left(\frac{p+1}{2 p+1}\right)} \\
& =\frac{\log (p+1)}{\log (2 p+1)} .
\end{aligned}
$$

However, for K to be dynamically defined we need α_{n} to converge very fast to $1 /(2 p+1)$. This is possible by the following

Lemma 1. The index α of $K(\alpha, p)$ in Theorem 1 can be chosen such that α_{n} decreases geometrically to $1 /(2 p+1)$ as fast as we desire.

Proof. Choose the sequence $\left\{\gamma_{n}\right\}$ such that $0<\gamma_{n}<\left(\frac{\sigma}{2}\right)^{\nu(n-1)}(2-\sigma)$ for $n \geq 2$, where ν is an arbitrary real $>1, \gamma_{n}<\frac{\sigma}{2} \gamma_{n-1}$, and $\sum_{n=1}^{\infty} \gamma_{n}=2-\sigma$. Then the index α can be constructed by exactly the same method so that (2) and (3) still hold, but now (2) shows that

$$
\begin{align*}
\alpha_{n}-\frac{1}{2 p+1} & =\frac{1}{2 p}\left(\frac{p+1}{2 p+1}\right)^{n}\left(1-p \alpha_{1}\right)^{-1} \cdots\left(1-p \alpha_{n-1}\right)^{-1} \gamma_{n} \\
& \leq \frac{1}{2 p}\left(\frac{p+1}{2 p+1}\right)^{n} \cdot\left(\frac{2(2 p+1)}{\sigma(p+1)}\right)^{n-1} \cdot\left(\frac{\sigma}{2}\right)^{\nu(n-1)}(2-\sigma) \tag{3}\\
& =\frac{1}{2 p} \cdot \frac{p+1}{2 p+1}\left(\frac{\sigma}{2}\right)^{(\nu-1)(n-1)}(2-\sigma) \tag{4}
\end{align*}
$$

and the rate of convergence can be controlled by ν since $0<\sigma<2$. Finally (2) and (3) show that $\alpha_{n}<\alpha_{n-1}$ since $\gamma_{n}<\frac{\sigma}{2} \gamma_{n-1}$.

Now the main result can be stated in

Theorem 2. Among the Cantor sets constructed in Theorem 1, there are infinitely many dynamically defined ones whose self-difference sets have given measure $0<\sigma<2$.

The key idea in proving Theorem 2 is that by Lemma 1 one can arrange things so that α_{n} converges very fast to $1 /(2 p+1)$. If the rate of convergence is large enough, i.e., if $K(\alpha, p)$ is closely similar to affine $K\left(\alpha^{\prime}, p\right)$ with $\alpha^{\prime}=\left(\frac{1}{2 p+1}, \frac{1}{2 p+1}, \ldots\right)$, then this $K(\alpha, p)$ is dynamically defined and its ψ is closely similar to the affine map $t \mapsto(2 p+1) t$ on $K(\alpha, p)$.

Before proving the above theorem we need two lemmas.

Lemma 2. Suppose that $\epsilon>0, \beta>2 p+1$. Then there exists a C^{∞} function $f=f_{\beta, \epsilon}:[0, \epsilon] \rightarrow[0, \beta \epsilon]$ such that
(i) $f(0)=0$ and $f(\epsilon)=\beta \epsilon$,
(ii) $f^{\prime}(t) \geq 2 p+1$,
(iii) $f^{\prime}(0)=f^{\prime}(\epsilon)=2 p+1$ and $f^{(n)}(0)=f^{(n)}(\epsilon)=0$ for $n \geq 2$,
(iv) $(2 p+1) t \leq f(t) \leq(2 p+1) t+(\beta-(2 p+1)) \epsilon$.

Proof. For $t \in[0, \epsilon]$ define

$$
\begin{align*}
& h(t)=h_{\beta, \epsilon}(t):=\exp \left\{-\left(\frac{1}{t}+\frac{1}{\epsilon-t}\right)\right\} \\
& g(t)=g_{\beta, \epsilon}(t):=\int_{0}^{t} h(\tau) d \tau / \int_{0}^{\epsilon} h(\tau) d \tau \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
f(t)=f_{\beta, \epsilon}(t):=(2 p+1) t+(\beta-(2 p+1)) \epsilon g(t) . \tag{6}
\end{equation*}
$$

Note that $g^{\prime}(t) \geq 0, g^{(n)}(0)=g^{(n)}(\epsilon)=0$ for $n \geq 1$, and $0 \leq g(t) \leq 1$. Now it is easily verified that f has the desired properties.

Lemma 3. With the above notation, if $0<\epsilon<1$, we have
(i) $\int_{0}^{\epsilon} h(t) d t \geq\left(\epsilon^{2} / 30\right) e^{-4 / \epsilon}$,
(ii) $\sup _{t \in[0, \epsilon]}\left|h^{\prime}(t)\right| \leq\left(64 / \epsilon^{2}\right) e^{-4 / \epsilon}$.

Proof. (i) Let

$$
\tilde{h}(t):= \begin{cases}\left(30 / \epsilon^{2}\right) e^{-4 / \epsilon}\left(t-\left(\frac{\epsilon}{2}-\frac{\epsilon^{2}}{30}\right)\right) & t \in\left[\frac{\epsilon}{2}-\frac{\epsilon^{2}}{30}, \frac{\epsilon}{2}\right] \\ 0 & t \in\left[0, \frac{\epsilon}{2}-\frac{\epsilon^{2}}{30}\right] .\end{cases}
$$

Note that if $t \in\left[\frac{\epsilon}{2}-\frac{\epsilon^{2}}{30}, \frac{\epsilon}{2}\right]$, then

$$
\frac{1}{t^{2}}-\frac{1}{(\epsilon-t)^{2}}=\frac{\epsilon(\epsilon-2 t)}{(t(\epsilon-t))^{2}}<\frac{\epsilon^{2}}{\left(\frac{\epsilon}{4} \cdot \frac{3 \epsilon}{4}\right)^{2}}=\frac{(16)^{2}}{9} \cdot \frac{1}{\epsilon^{2}}<\frac{30}{\epsilon^{2}}
$$

Therefore $\frac{d}{d t}(h(t)-\tilde{h}(t)) \leq 0$ on $\left[\frac{\epsilon}{2}-\frac{\epsilon^{2}}{30}, \frac{\epsilon}{2}\right]$, so that $h(t) \geq \tilde{h}(t)$ on $\left[0, \frac{\epsilon}{2}\right]$. Hence one has

$$
\begin{aligned}
\int_{0}^{\epsilon} h(t) d t & =2 \int_{0}^{\epsilon / 2} h(t) d t \\
& \geq 2 \int_{\epsilon / 2-\epsilon^{2} / 30}^{\epsilon / 2} \tilde{h}(t) d t \\
& =\epsilon^{2} / 30 e^{-4 / \epsilon}
\end{aligned}
$$

(ii) First we show that for $t \in\left[0, \frac{\epsilon}{8}\right], h^{\prime \prime}(t) \geq 0$. This is equivalent to $\left(\frac{1}{t^{2}}-\frac{1}{(\epsilon-t)^{2}}\right)^{2}-$ $\frac{2}{t^{3}}-\frac{2}{(\epsilon-t)^{3}} \geq 0$, which in turn is equivalent to $\epsilon(\epsilon-2 t)^{2} \geq 2 t(\epsilon-t)\left(\epsilon^{2}+3 t^{2}-3 \epsilon t\right)$. But for $t \in\left[0, \frac{\epsilon}{8}\right]$ one has

$$
\epsilon(\epsilon-2 t)^{2} \geq \frac{9}{16} \epsilon^{3} \geq \frac{67}{256} \epsilon^{4} \geq 2 t(\epsilon-t)\left(\epsilon^{2}+3 t^{2}-3 \epsilon t\right)
$$

This being so, we have

$$
\sup _{t \in[0, \epsilon / 8]} h^{\prime}(t)=h^{\prime}\left(\frac{\epsilon}{8}\right)=\left(\frac{64}{\epsilon^{2}}-\frac{64}{49 \epsilon^{2}}\right) e^{-\left(\frac{8}{\epsilon}+\frac{8}{7 \epsilon}\right)} .
$$

On the other hand, on $\left[\frac{\epsilon}{8}, \frac{\epsilon}{2}\right]$ we have

$$
0 \leq h^{\prime}(t) \leq\left(\frac{64}{\epsilon^{2}}-\frac{64}{49 \epsilon^{2}}\right) e^{-4 / \epsilon}
$$

Since $h(t)=h(\epsilon-t)$, the result follows.

Now we are ready to prove Theorem 2. Recall that we can write $K=K(\alpha, p)$ as $K=\bigcap_{n \geq 0} K_{n}$, where $K_{0}=[0,1]$ and K_{n} is defined as in section 2.

Proof of Theorem 2. Fix $p \geq 1$ and consider a $K(\alpha, p)$ as in Theorem 1. By Lemma 1 we can select the index α so that α_{n} decreases geometrically to $1 /(2 p+1)$ at a rate $\nu>1$ to be carefully chosen later.

Decompose K_{n} from the left to the right into its connected components $K_{n}^{1}, K_{n}^{2}, \cdots, K_{n}^{(p+1)^{n}}$, where each $K_{n}^{j}:=\left[\lambda_{n, j}, \mu_{n, j}\right]$ is a closed interval of length $\epsilon_{n}:=\prod_{j=1}^{n}\left(\frac{1-p \alpha_{j}}{p+1}\right)$. Similarly, decompose $K_{n-1} \backslash K_{n}$ from the left to the right into its connected components $H_{n}^{1}, H_{n}^{2}, \ldots, H_{n}^{p(p+1)^{n-1}}$, where each H_{n}^{j} is an open interval of length $\epsilon_{n}^{\prime}:=\alpha_{n} \epsilon_{n-1}$. Set $\beta_{n}:=\left(\frac{p+1}{1-p \alpha_{n}}\right)$ and $\zeta_{n}:=\left(\frac{\alpha_{n-1}}{\alpha_{n}}\right) \beta_{n-1}$. From (3) and Lemma 1 it is clear that

$$
\begin{equation*}
2 p+1<\beta_{n}<\frac{2}{\sigma}(2 p+1), \zeta_{n}>\beta_{n} . \tag{7}
\end{equation*}
$$

We want to show that K is a dynamically defined Cantor set with basis $K_{1}^{1}, K_{1}^{2}, \cdots$, K_{1}^{p+1}. Evidently it suffices to construct ψ on K_{1}^{1}, for then we can repeat this ψ on every K_{1}^{j}. Define a sequence $\left\{\psi_{n}\right\}_{n \geq 1}$ of C^{∞} functions on $K_{1}^{1}=\left[0, \epsilon_{1}\right]$ as follows: Set $\psi_{1}=f_{\beta_{1}, \epsilon_{1}}$ on K_{1}^{1},

$$
\psi_{2}(t)=\left\{\begin{array}{lll}
f_{\beta_{2}, \epsilon_{2}}\left(t-\lambda_{2, j}\right)+\lambda_{1, j} & t \in K_{2}^{j}, & 1 \leq j \leq p+1 \\
f_{\zeta_{2}, \epsilon_{2}^{\prime}}\left(t-\mu_{2, j}\right)+\mu_{1, j} & t \in H_{2}^{j}, & 1 \leq j \leq p
\end{array}\right.
$$

and define ψ_{n} for $n \geq 3$ as

$$
\psi_{n}(t)=\left\{\begin{array}{lll}
\psi_{n-1}(t) & t \in K_{1}^{1} \backslash K_{n-1} & \tag{8}\\
f_{\beta_{n}, \epsilon_{n}}\left(t-\lambda_{n, j}\right)+\lambda_{n-1, j} & t \in K_{n}^{j}, & 1 \leq j \leq(p+1)^{n-1} \\
f_{\zeta_{n}, \epsilon_{n}^{\prime}}\left(t-\mu_{n, j}\right)+\mu_{n-1, j} & t \in H_{n}^{j}, & 1 \leq j \leq p(p+1)^{n-2}
\end{array}\right.
$$

Clearly each ψ_{n} maps K_{1}^{1} onto [0,1] in a C^{∞} way, ψ_{n} is strictly increasing, $\psi_{n}^{\prime}(t) \geq$ $2 p+1$, and

$$
\begin{align*}
& \psi_{m}\left(K_{n}^{j}\right)=K_{n-1}^{j} \text { for } 1 \leq j \leq(p+1)^{n-1} \text { and } m \geq n \tag{9}\\
& \psi_{m}\left(H_{n}^{j}\right)=H_{n-1}^{j} \text { for } 1 \leq j \leq p(p+1)^{n-2} \text { and } m \geq n \tag{10}
\end{align*}
$$

Fix some $n \geq 2$. We are going to estimate the difference $\left|\psi_{n+1}^{\prime \prime}-\psi_{n}^{\prime \prime}\right|$ on K_{1}^{1}. Since $\psi_{n+1}^{\prime \prime}=\psi_{n}^{\prime \prime}$ on $K_{1}^{1} \backslash K_{n}$ by (8), it suffices to estimate this difference on $K_{n} \cap K_{1}^{1}$. Evidently

$$
\sup _{t \in K_{n} \cap K_{1}^{1}}\left|\psi_{n+1}^{\prime \prime}(t)-\psi_{n}^{\prime \prime}(t)\right|=\sup _{t \in K_{n}^{1}}\left|\psi_{n+1}^{\prime \prime}(t)-\psi_{n}^{\prime \prime}(t)\right| .
$$

But for $t \in K_{n}^{1}=\left[0, \epsilon_{n}\right]$ we have

$$
\begin{align*}
\left|\psi_{n}^{\prime \prime}(t)\right| & =\left|f_{\beta_{n}, \epsilon_{n}}^{\prime \prime}(t)\right| \\
& =\left(\beta_{n}-(2 p+1)\right) \epsilon_{n}\left|g_{\beta_{n}, \epsilon_{n}}^{\prime \prime}(t)\right| \quad(b y(6)) \\
& =\frac{\left(\beta_{n}-(2 p+1)\right) \epsilon_{n}}{\int_{0}^{\epsilon_{n}} h_{\beta_{n}, \epsilon_{n}}(t) d t}\left|h_{\beta_{n}, \epsilon_{n}}^{\prime}(t)\right| \quad(b y(5)) \tag{11}\\
& \leq \frac{\left(\beta_{n}-(2 p+1)\right) \epsilon_{n}}{\left(\epsilon_{n}^{2} / 30\right) e^{-4 / \epsilon_{n}}} \cdot \frac{64}{\epsilon_{n}^{2}} e^{-4 / \epsilon_{n}} \quad(\text { by lemma }(3)) \\
& =\frac{(\text { const. })\left(\beta_{n}-(2 p+1)\right)}{\epsilon_{n}^{3}} .
\end{align*}
$$

On the other hand, $\epsilon_{n}=\prod_{j=1}^{n} \beta_{j}^{-1} \geq\left(\frac{\sigma}{2}\right)^{n}(2 p+1)^{-n}$ by (7), and

$$
\begin{aligned}
\beta_{n}-(2 p+1) & =\beta_{n}\left(1-\frac{(2 p+1)\left(1-p \alpha_{n}\right)}{p+1}\right) \\
& \leq \frac{2}{\sigma} \frac{p(2 p+1)}{p+1}\left((2 p+1) \alpha_{n}-1\right) \\
& \leq \frac{(2 p+1)}{\sigma}\left(\frac{\sigma}{2}\right)^{\nu(n-1)}(2-\sigma) \quad \quad(b y(4))
\end{aligned}
$$

Hence we have

$$
\begin{align*}
\left.\sup _{t \in K_{n}^{1}} \mid \psi_{n}^{\prime \prime} t\right) \mid & \leq\left(\text { const.) }\left(\frac{\sigma}{2}\right)^{\nu(n-1)-3 n}(2 p+1)^{3 n}\right. \tag{12}\\
& \leq \text { (const.) }\left(\frac{\sigma}{2}\right)^{(\nu-3) n}(2 p+1)^{3 n} .
\end{align*}
$$

Now we estimate $\left|\psi_{n+1}^{\prime \prime}\right|$ on K_{n}^{1}. First suppose that $t \in K_{n+1}^{1}$. Then

$$
\begin{equation*}
\left|\psi_{n+1}^{\prime \prime}(t)\right|=\left|f_{\beta_{n+1}, \epsilon_{n+1}}^{\prime \prime}(t)\right| \leq(\text { const. })\left(\frac{\sigma}{2}\right)^{(\nu-3) n}(2 p+1)^{3 n} \tag{13}
\end{equation*}
$$

by (12). Next suppose that $t \in H_{n+1}^{1}$. Then since $\alpha_{n}>\alpha_{n+1}>1 /(2 p+1)$,

$$
\begin{align*}
\left|\psi_{n+1}^{\prime \prime}(t)\right| & =\left|f_{\zeta_{n+1}, \epsilon_{n+1}^{\prime}}^{\prime \prime}(t)\right| \\
& \leq \frac{(\text { const. })\left(\zeta_{n+1}-(2 p+1)\right)}{\left(\epsilon_{n+1}^{\prime}\right)^{3}} \tag{11}\\
& =\frac{(\text { const. })}{\alpha_{n+1}^{3} \epsilon_{n}^{3}} \cdot \frac{\alpha_{n}}{\alpha_{n+1}}\left(\beta_{n}-\frac{\alpha_{n+1}}{\alpha_{n}}(2 p+1)\right) \tag{14}\\
& \leq \frac{(\text { const. })}{\epsilon_{n}^{3}}\left(\beta_{n}-(2 p+1)\right)+\frac{(\text { const. })}{\epsilon_{n}^{3}}(2 p+1)\left(1-\frac{\alpha_{n+1}}{\alpha_{n}}\right) \\
& \leq(\text { const. })\left(\frac{\sigma}{2}\right)^{(\nu-3) n}(2 p+1)^{3 n} .
\end{align*}
$$

From (13) and (14) we have

$$
\begin{align*}
\sup _{t \in K_{n}^{1}}\left|\psi_{n+1}^{\prime \prime}(t)\right| & =\max \left\{\sup _{t \in K_{n+1}^{1}}\left|\psi_{n+1}^{\prime \prime}(t)\right|, \sup _{t \in H_{n+1}^{1}}\left|\psi_{n+1}^{\prime \prime}(t)\right|\right\} \\
& \leq(\text { const. })\left(\frac{\sigma}{2}\right)^{(\nu-3) n}(2 p+1)^{3 n} . \tag{15}
\end{align*}
$$

Now take $\nu>1$ so large that $\tau:=\left(\frac{\sigma}{2}\right)^{\nu-3}(2 p+1)^{3}<1$. Two estimates (12) and (15) will then show that

$$
\sup _{t \in K_{1}^{1}}\left|\psi_{n+1}^{\prime \prime}(t)-\psi_{n}^{\prime \prime}(t)\right| \leq \text { (const.) } \tau^{n}
$$

However this means that $\left\{\psi_{n}^{\prime \prime}\right\}$ is uniformly convergent. Since $\left\{\psi_{n}^{\prime}\right\}$ converges in at least one point (say $t=0$), we conclude that $\left\{\psi_{n}^{\prime}\right\}$ is uniformly convergent. Again since $\left\{\psi_{n}\right\}$ converges in at least one point, $\left\{\psi_{n}\right\}$ will converge uniformly on K_{1}^{1} to a mapping ψ which is clearly (at least) C^{2}. Moreover, ψ maps K_{1}^{1} onto [0,1] and $\psi^{\prime}(t) \geq 2 p+1$. Repeating this ψ on every K_{1}^{j} we obtain the required mapping (also denoted by ψ). Finally (9) and (10) show that $\psi\left(K_{n}^{j}\right)=K_{n-1}^{j}$ for $1 \leq j \leq(p+1)^{n}$
and $\psi\left(H_{n}^{j}\right)=H_{n-1}^{j}$ for $1 \leq j \leq p(p+1)^{n-1}, n \geq 1$. From this it can be checked that $\psi^{-n}\left(K_{1}\right)=K_{n+1}$, and we are done.
§4. Final Remark. While the above proof gives sufficient conditions on $K(\alpha, p)$ to be dynamically defined, it is interesting to answer the following

Problem. Given $p \geq 1$, find necessary and sufficient conditions on the index α which guarantee $K(\alpha, p)$ is dynamically defined.

References

[1] K.J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1985.
[2] J. Palis and F. Takens, Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations, Cambridge University Press, 1992.
[3] A. Sannami, An example of a regular Cantor set whose difference is a Cantor set with positive measure, Hokkaido Math. J., to appear.

Department of Mathematics, University of Tehran, Tehran, Iran

