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Abstract. Let f : C → C be an entire map of the form f(z) = P (z) exp(Q(z)),
where P and Q are polynomials of arbitrary degrees (we allow the case Q = 0).
Building upon a method pioneered by M. Shishikura, we show that if f has a Siegel
disk of bounded type rotation number centered at the origin, then the boundary
of this Siegel disk is a quasicircle containing at least one critical point of f . This
unifies and generalizes several previously known results.
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1. Introduction

Let f be a non-linear entire map of the complex plane or a rational map of the
Riemann sphere of degree ≥ 2. Suppose f(0) = 0 and f ′(0) = e2πiθ, where the rotation

number 0 < θ < 1 is irrational. We say f is locally linearizable at the fixed point 0 if
there exists a holomorphic change of coordinates near 0 which conjugates f to its
linear part Rθ : z 7→ e2πiθz. The maximal region in which f is conjugate to Rθ is a
simply-connected domain ∆f called the Siegel disk of f centered at 0. Thus f acts as
an irrational rotation in ∆f . However, understanding the topology and geometry of
the boundary ∂∆f , and the dynamics of f on it, is often quite difficult.
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This paper will study Siegel disks in the family Ep,q of entire maps of the form

(1.1) f : z 7→ P (z) exp(Q(z)),

where P and Q are polynomials of degrees p and q, respectively. We consider the
subfamily Ep,q(θ) ⊂ Ep,q of maps which have a Siegel disk of rotation number θ
centered at the origin. There are good reasons to view these entire maps as close
relatives of polynomials. For example, they have finitely many zeros and critical
points and, in the transcendental case q > 0, a single (finite) asymptotic value at the
origin. They belong to the Speiser class S of entire maps with finitely many singular
values, or more generally to the Eremenko-Lyubich class B of entire maps with a
bounded set of singular values, which are known to share many of the dynamical
properties of polynomial maps (see [EL] and compare [MNTU] where such maps
are called “decorated exponential”). Our primary focus will of course be on the
transcendental case q > 0, but the analysis will cover the polynomial case q = 0 as
well.

Expand the rotation number θ into its continued fraction [a1, a2, a3, . . .], where each
an is a positive integer. Recall that θ is of bounded type if {an} is a bounded sequence.
It is well-known that in this case f is locally linearizable at the origin.

Main Theorem. Let f ∈ Ep,q(θ), where 0 < θ < 1 is an irrational number of bounded
type. Then the Siegel disk of f centered at the origin is bounded by a quasicircle in
the plane which contains at least one critical point of f .

Compare Fig. 1.

This generalizes and unifies several results obtained over the past 20 years by
various authors. They include Douady-Herman-Swiatek’s for quadratic polynomials
[D], this author’s for cubic polynomials [Z1], Shishikura’s for polynomials of arbitrary
degree (unpublished), Geyer’s for the map z 7→ e2πiθz ez [Ge], and Keen-Zhang’s for
the maps of the form z 7→ (e2πiθz + az2) ez [KZ]. See also Chéritat’s examples of
“simple” entire maps in [C].

It is important to realize that the choice of normalization for the family Ep,q(θ) in
the transcendental case q > 0 is not a matter of convenience. In fact, in contrast to the
polynomial case, when q > 0 the space Ep,q is not invariant under affine conjugations
that move the origin. As a result, the Main Theorem does not imply anything about
bounded type Siegel disks in Ep,q that are centered at points other than 0. This
is not entirely a shortcoming of our approach: for example, if θ is an irrational of
bounded type and λ = e2πiθ, the boundary of the Siegel disk centered at λ of the map
z 7→ λ ez−λ in E0,1 contains ∞, hence fails to be a Jordan curve on the sphere (see
[H2] and compare Fig. 2). This phenomenon is known to be common to all entire
maps without critical points [GS].
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Figure 1. The Julia sets of four maps in Ep,q(θ). In each case, the
boundary of the Siegel disk is the quasicircle delineated in black at
the center of picture. Upper left: z 7→ λz + z2; upper right: z 7→
λ z ez; lower left: z 7→ λ z (1 − 2z/3) ez; lower right: z 7→ λ z (1 −
(11 + 3i)z/13) eiz3

. Here λ = eπi(
√

5−1) corresponds to the golden mean
rotation number.

Our strategy of proof is strongly inspired by Shishikura’s unpublished work for
Siegel disks of polynomials. Let f ∈ Ep,q(θ) and ζf : D → ∆f be the unique conformal
isomorphism that satisfies ζf(0) = 0, ζ ′f(0) > 0. It follows from Schwarz Lemma that
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Figure 2. (Courtesy of A. Chéritat) Invariant curves in the Siegel disk

of the map z 7→ λ ez−λ centered at λ. As before, λ = eπi(
√

5−1). This
Siegel disk is unbounded and its boundary fails to be locally connected.

ζf linearizes f in the sense that

f ◦ ζf = ζf ◦Rθ in D.

Following Shishikura, we show that the invariant curves γf,r := ζf({z : |z| = r}) in ∆f

areK-quasicircles for a constantK > 1 independent of the radius 0 < r < 1. A simple
compactness argument then proves that ∂∆f is a quasicircle (Theorem 2.3). That
∂∆f must contain a critical point follows from a standard argument (Theorem 2.8).

Let us give a quick outline of the proof: Fix 0 < r < 1 and take a suitable

quasiconformal reflection I : Ĉ → Ĉ which swaps 0 and ∞ and keeps the invariant
curve γf,r ⊂ ∆f fixed pointwise. Use I to “symmetrize” f about γf,r in order to

produce a quasiregular dynamics F : C∗ → Ĉ which commutes with I. This replaces
the Siegel disk of f with a “quasiconformal Herman ring” for F . The sphere admits
a conformal structure µ of bounded dilatation which is invariant under both F and

I. Straightening µ by an appropriately normalized quasiconformal map ξ : Ĉ → Ĉ

gives a conjugate map G := ξ ◦F ◦ ξ−1 : C∗ → Ĉ which is holomorphic and commutes
with the reflection z 7→ 1/z across the unit circle T = ξ(γf,r). The map G has a
genuine Herman ring which contains T as an invariant curve. Note, however, that
the maximal dilatation of ξ may depend on r and a priori can grow large as r → 1.

By analyzing the explicit form of G and estimating the location of its poles, we
show that there are constants δ > 1 and M > 0, depending only on the degrees p and
q, such that |zG′(z)/G(z)| ≤ M in the annulus {z : δ−1 < |z| < δ} (Theorem 5.6).
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This step is rather easy for polynomials but requires some work in the transcen-
dental case. Since the rotation number θ is assumed to be of bounded type, the
theorem of Herman-Swiatek (Theorem 2.7) shows that the restriction of G to T is k-
quasisymmetrically conjugate to Rθ for a constant k > 1 which only depends on p, q, θ.
Extend this conjugacy to a K-quasiconformal map D → D, with K > 1 independent
of r, and use it to replace the action of G on D with a K-quasiconformal rotation
by angle θ. Intuitively, we paste a “quasiconformal Siegel disk” on D to produce a
new quasiregular dynamics Ĝ : C → C. The map Ĝ admits an invariant conformal
structure ν of bounded dilatation. Straightening ν by an appropriately normalized
K-quasiconformal map ψ : C → C gives an entire map g := ψ ◦ Ĝ ◦ ψ−1 : C → C. It
is easily verified that g ∈ Ep,q(θ) and that the K-quasicircle ψ(T) is just the invariant
curve γg,r = ζg({z : |z| = r}) in the Siegel disk ∆g. If we could show that g is the
same map f that we started with, it would follow that γf,r is a K-quasicircle for a
constant K independent of r, which would prove the Main Theorem.

Unfortunately, the rigidity property g = f is too good to be true for a general
f ∈ Ep,q(θ). The procedure

f
symmetrize7−→ F

straighten7−→ G
modify7−→ Ĝ

straighten7−→ g

defines a surgery map Sr : Ep,q(θ) → Ep,q(θ) which is far from the identity. In fact, the
map g = Sr(f) may not be even topologically conjugate to f , and even when it is, one
may not be able to promote the conjugacy to a conformal one. The difficulty arises
when f has a critical point that is captured by its Siegel disk, in the sense that its
forward orbit eventually hits ∆f . Let us call the first point of hitting a capture spot of
f in ∆f . Then, a necessary and sufficient condition for the existence of a conformal
conjugacy between f and g = Sr(f) is that the capture spots of f and g have the
same conformal positions in their respective Siegel disks ∆f and ∆g (Theorem 6.1).
This can hardly be guaranteed in the above surgery.

To circumvent this problem, we separate the argument into three cases based on
the number and position of the capture spots of f in ∆f :

• Case 1. The only capture spot of f , if any at all, is the fixed point 0. In other
words, every critical orbit is either disjoint from ∆f or lands at the origin. This
case is easy to handle since a standard pull-back argument shows that f is rigid, so
Sr(f) = f (Corollary 6.2).

• Case 2. There is precisely one non-zero capture spot of f in ∆f . In other words,
there is an ω ∈ ∆f r {0} such that the forward orbit of every captured critical point
hits ∆f for the first time at ω or else at 0. In this case, we produce a holomorphic
family {ft}t∈D∗ of quasiconformal deformations of f in Ep,q(θ) with the property that
the non-zero capture spot ωt of ft has conformal position t in ∆ft

(Theorem 7.1).
We use holomorphic motions to show that there is a constant K depending only on
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p, q, θ such that the invariant curve γt,r := ζft
({z : |z| = r}) ⊂ ∆ft

is a K-quasicircle
whenever 0 < |t| < 1/2 or r < |t| < 1 (Lemma 7.4 and Lemma 7.6). The case of
the intermediate values of |t| is then handled by applying the Maximum Modulus
Principle to a suitable cross-ratio function D∗ → C (Theorem 7.7).

• Case 3. For the general case, let U be an iterated preimage of ∆f which containsm
critical points counting multiplicities. We modify the dynamics of f on an appropriate
subset of U so that the new map U → f(U) is a quasiregular branched covering with
a single branch point of order m. We apply this type of modification to all such U ,
making sure that the resulting branch points eventually map to 0 or some designated
point ω ∈ ∆f r{0}. Straightening the resulting quasiregular action, we obtain a map
g ∈ Ep,q(θ) which falls into one of the categories covered by the cases (1) or (2) above.
The maps f and g are not topologically conjugate, but there is a quasiconformal
homeomorphism of the plane which maps ∂∆f to ∂∆g. Since ∂∆g is a quasicircle by
the cases (1) or (2), it follows that ∂∆f is a quasicircle as well, which completes the
proof of the Main Theorem.

Acknowledgements. I would like to thank the referee(s) for many detailed and careful
comments. This work is partially supported by a PSC-CUNY grant from the Research
Foundation of the City University of New York.

2. Preliminaries

Throughout the paper we will adopt the following notations:

• C is the complex plane and Ĉ = C ∪ {∞} is the Riemann sphere.

• H := {z ∈ C : Im(z) > 0} is the upper half-plane.

• Dr := {z ∈ C : |z| < r} and D := D1.

• Tr := {z ∈ C : |z| = r} and T := T1.

• C∗ := C r {0} and D∗ := D r {0}.
• Ar,s := {z ∈ C : r < |z| < s}.

We assume the reader is familiar with the basic theory of quasiconformal mappings
in the plane, as in [A] or [LV].

2.1. Quasisymmetric maps. An orientation-preserving homeomorphism f : R → R

is called k-quasisymmetric if

(2.1) k−1 ≤ f(x+ t) − f(x)

f(x) − f(x− t)
≤ k

for all x ∈ R and t > 0. It is well-known from the work of Beurling and Ahlfors
that this condition is equivalent to f having a quasiconformal extension to the upper
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half-plane [A]. In particular, they show that the map fBA : H → H defined by

fBA(x+ iy) :=
(1 + i)

2y

(∫ x+y

x

f(t) dt− i

∫ x

x−y

f(t) dt

)

is a K-quasiconformal extension of f , where K depends only on k and not on the
choice of f . We call fBA the Beurling-Ahlfors extension of f . The assignment f 7→ fBA

is readily seen to be equivariant with respect to the action of the real affine group

Aut(C) ∩ Aut(H) = {z 7→ az + b : a > 0, b ∈ R},
i.e.,

(2.2) (α ◦ f ◦ β)BA = α ◦ fBA ◦ β
for all α, β in this group.

We use the Beurling-Ahlfors extension to define standard extensions of circle homeo-
morphisms to disks and annuli as follows. Let f : T → T be an orientation-preserving
homeomorphism and g : R → R be a lift of f under the covering map x 7→ e2πix.
Note that g is unique up to an additive integer and commutes with the unit transla-
tion x 7→ x+ 1. By definition, f is k-quasisymmetric if g is k-quasisymmetric in the
sense of (2.1). In this case the extension gBA : H → H is K-quasiconformal for some
K = K(k) and by (2.2) commutes with z 7→ z + 1, so it descends under the covering

map z 7→ e2πiz to a K-quasiconformal homeomorphism f̂ : D → D which extends f
and fixes the origin.

The following lemma gives a similar construction for the annulus:

Lemma 2.1. Suppose f : ∂Ar,s → ∂Ar,s restricts to k-quasisymmetric maps on each
of the circles Tr and Ts, with f(r) = r and f(s) = s. Then f extends to a K-

quasiconformal homeomorphism f̂ : Ar,s → Ar,s, where K = K(k, s/r).

Proof. After a radially affine stretch, we may assume r = 1, s = e2π2

and construct
a K-quasiconformal extension of f with K = K(k). Under the covering map from
the strip S := {z : 0 < Im(z) < π} to Ar,s defined by z 7→ e−2πiz , the map f
lifts to a homeomorphism h : ∂S → ∂S which satisfies h(0) = 0, h(iπ) = iπ, and
commutes with z 7→ z + 1. Moreover, the restriction of h to the lines Im(z) = 0 and
Im(z) = π is k-quasisymmetric. Under the conformal isomorphism H → S defined
by z 7→ log z, the map h induces a homeomorphism g : R → R which satisfies
g(0) = 0, g(1) = 1, g(−1) = −1, and commutes with z 7→ ez. It is not hard to see
that g is k′-quasisymmetric for some k′ depending on k. The extension gBA : H → H

commutes with z 7→ ez by (2.2), and it is K-quasiconformal for some K depending

only on k′, hence on k. The induced K-quasiconformal map ĥ : S → S commutes
with z 7→ z + 1, so it descends to a K-quasiconformal extension f̂ : Ar,s → Ar,s, as
required. �
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2.2. Quasicircles. A Jordan curve γ ⊂ Ĉ is called a K-quasicircle if there is a K-

quasiconformal map ϕ : Ĉ → Ĉ such that γ = ϕ(T). We call γ a quasicircle if it is a
K-quasicircle for some K ≥ 1.

The following lemma is standard:

Lemma 2.2. Let γ ⊂ Ĉ be a K-quasicircle, U be a component of Ĉrγ, and ζ : D → U
be a conformal isomorphism. Then ζ extends to a K2-quasiconformal map of the
sphere.

Proof. Take a K-quasiconformal map ϕ : Ĉ → Ĉ such that γ = ϕ(T). The reflection
ι : z 7→ 1/z across T induces a K2-quasiconformal reflection j := ϕ ◦ ι ◦ ϕ−1 which
fixes γ pointwise. The homeomorphism

ζ̂ :=

{
ζ inside D

j ◦ ζ ◦ ι outside D

is then a K2-quasiconformal extension of ζ to the sphere. �

Theorem 2.3. Let ζ : D → U ⊂ Ĉ be a conformal isomorphism. Then, the following
conditions are equivalent:

(i) The boundary ∂U is a quasicircle.

(ii) The Jordan curves γr := ζ(Tr) are K-quasicircles for some K independent of
0 < r < 1.

Proof. First suppose ∂U is a K-quasicircle. By Lemma 2.2, ζ extends to a K2-
quasiconformal map ζ̂ of the sphere. Since γr is the image of T under z 7→ ζ̂(rz), it
follows that γr is a K2-quasicircle for every 0 < r < 1.

Conversely, suppose there is a K such that each γr is a K-quasicircle. Without
losing generality assume limr→1 ζ(r) exists and is 6= ∞. Take K-quasiconformal

maps ϕr : Ĉ → Ĉ such that γr = ϕr(T). Pre-compose ϕr with a Möbius map
preserving D to arrange ϕr(0) = ζ(0) and ϕr(1) = ζ(r). The K-quasiconformal maps
z 7→ (ϕr(z) − ζ(0))/(ζ(r) − ζ(0)) fix 0 and 1, so by compactness there is a sequence

rn → 1 such that ϕrn
tends locally uniformly to a K-quasiconformal map ϕ : Ĉ → Ĉ

(the limit of ϕrn
cannot be a constant map since that would mean γrn

converges to a
point). It follows that ∂U = ϕ(T) is a K-quasicircle. �

Remark 2.4. In the situation of Theorem 2.3, suppose ζ(0) = 0 and every γr is the

image of T under a K-quasiconformal map ϕr : Ĉ → Ĉ which fixes 0 and ∞. Then
by the above proof the limit ϕ = limn→∞ ϕrn

will also have 0 and ∞ as fixed points.
It follows in particular that the quasicircle ∂U = ϕ(T) does not pass through ∞.
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We will need the following geometric characterization of quasicircles in terms of
cross-ratios, which is equivalent to Ahlfors’s “bounded turning condition” [A]. Define

the cross-ratio of a quadruple (a, b, c, d) of distinct points in Ĉ by

(2.3) Cr(a, b, c, d) :=
(a− b)(c− d)

(a− c)(b− d)
.

It is easily checked that Cr is invariant under the action of the Möbius group; in
particular, 0 < Cr(a, b, c, d) < 1 whenever the points a, b, c, d lie on a circle (in this
cycle order).

Theorem 2.5. The following conditions on a Jordan curve γ ⊂ Ĉ are equivalent:

(i) γ is a K-quasicircle.

(ii) There is a constant M > 0 such that for every quadruple of distinct points
a, b, c, d ∈ γ (in this cyclic order),

|Cr(a, b, c, d)| ≤M.

The constants K and M depend only on each other and not on the choice of γ.

2.3. Linearization of circle maps. Let f : T → T be an orientation-preserving
homeomorphism and g : R → R be a lift of f under the covering map x 7→ e2πix. The
limit

lim
n→∞

g◦n(x)

n
(mod Z)

exists and is independent of the choice of x ∈ R and the lift g. We call this residue
class the rotation number of f and often identify it with its unique representative in
the interval [0, 1). It is a basic invariant of the conjugacy class of f .

Suppose f : T → T has an irrational rotation number 0 < θ < 1. We say f is
topologically linearizable if there exists a homeomorphism h : T → T which conjugates
f to the rigid rotation Rθ : z 7→ e2πiθz:

f ◦ h = h ◦Rθ on T.

The linearizing map h is unique if normalized so that h(1) = 1. The map f is qua-
sisymmetrically (resp. smoothly, analytically) linearizable if its normalized linearizing
map is quasisymmetric (resp. smooth, real-analytic).

An irrational number 0 < θ < 1 is Diophantine of exponent ν ≥ 2 if there is a
constant C > 0 such that ∣∣∣∣θ −

p

q

∣∣∣∣ >
C

qν

for all rational numbers p/q with q > 0. We say θ is of bounded type if it is Diophantine
of exponent ν = 2. Equivalently, θ is bounded type if the integers an in the continued
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fraction expansion

θ = [a1, a2, a3, . . .] =
1

a1 +
1

a2 +
1

a3 +
1
. . .

form a bounded sequence.

The basic result on linearization of real-analytic diffeomorphisms is the following
theorem of Herman and Yoccoz (see [H1] and [Y]):

Theorem 2.6 (Herman-Yoccoz). Every real-analytic circle diffeomorphism with a
Diophantine rotation number is analytically linearizable.

In the presence of critical points, however, the situation is much more subtle. Let
us call a quadruple (a, b, c, d) of points in T sorted if they appear in this cyclic order
as we go around the circle counterclockwise. The cross-ratio of a sorted quadruple is
defined by (2.3) and satisfies 0 < Cr(a, b, c, d) < 1. Given an orientation-preserving
homeomorphism f : T → T and an interval I ⊂ T, define the cross-ratio distortion of

f on I by

D(f, I) := sup log
Cr(f(a), f(b), f(c), f(d))

Cr(a, b, c, d)
,

where the supremum is taken over all sorted quadruples (a, b, c, d) of points in I. For
a collection J of intervals in T, we define the thickness τ(J) as the maximum number
of overlapping intervals in J. Equivalently,

τ(J) = sup
T

∑

I∈J

χI ,

where χI is the characteristic function of the interval I. Finally, define the cross-ratio

distortion norm of f by

D(f) := sup
1

τ(J)

∑

I∈J

D(f, I),

where the supremum is taken over all collections J with finite thickness.

The following theorem of Herman and Swiatek addresses the linearization problem
of real-analytic circle homeomorphisms, allowing the presence of critical points (see
[H3] and [S]):

Theorem 2.7 (Herman-Swiatek). Let f : T → T be an orientation-preserving home-
omorphism whose rotation number θ is an irrational of bounded type.

(i) If the cross-ratio distortion norm D(f) is finite, then f is k-quasisymmetrically
linearizable, where k depends only on D(f) and θ.
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(ii) If f is real-analytic, then D(f) is finite. More precisely, suppose there are
constants δ > 1 and M > 0 such that f extends holomorphically to the annulus
δ−1 < |z| < δ and satisfies

(2.4)

∣∣∣∣
zf ′(z)

f(z)

∣∣∣∣ ≤M whenever δ−1 < |z| < δ.

Then D(f) < C, where the constant C > 0 depends only on δ,M . As a result,
f will be k-quasisymmetrically linearizable, with k depending only on θ, δ,M .

Here is how we interpret (2.4): Consider the strip S := {z : | Im(z)| < log δ/(2π)}
and let g : S → C be the lift of f under the exponential map z 7→ w = e2πiz which
satisfies 0 ≤ g(0) < 1. A simple computation shows that g′(z) = wf ′(w)/f(w), so
the condition (2.4) translates into the bound |g′| ≤ M in S. This, in turn, gives a
bound (depending on δ,M) on the size of the 1-periodic function z 7→ g(z) − z in S,
which is essential in the proof of Theorem 2.7.

2.4. Siegel disks. Let 0 < θ < 1 be an irrational number and f be a non-linear
holomorphic map defined in a neighborhood of the origin, with f(0) = 0 and f ′(0) =
e2πiθ. We say f is locally linearizable at the origin if there exists a holomorphic change
of coordinates near 0 which conjugates f to its linear part Rθ : z 7→ e2πiθz. The
largest neighborhood of 0 in which f is conjugate to Rθ is a simply-connected domain
∆ = ∆f called the Siegel disk of f centered at 0. Let ζ = ζf : D → ∆ be the unique
conformal isomorphism such that ζ(0) = 0 and ζ ′(0) > 0. The number ζ ′(0) is called
the conformal radius of ∆. Applying Schwarz Lemma to ζ−1 ◦ f ◦ ζ shows that ζ
conjugates f to Rθ:

f ◦ ζ = ζ ◦Rθ in D.

We often refer to ζ as the linearizing map of f in ∆.

According to Siegel [Si], when θ is Diophantine, every holomorphic map f with
f(0) = 0 and f ′(0) = e2πiθ is locally linearizable at 0. In particular, f has a Siegel
disk centered at 0 if the rotation number θ is of bounded type.

The following result, originally due to Ghys [Gh], will be used in the proof of the
Main Theorem:

Theorem 2.8. Let f : C → C be a non-linear entire map with f(0) = 0 and f ′(0) =
e2πiθ, where 0 < θ < 1 is Diophantine. Suppose the Siegel disk boundary ∂∆ is a
Jordan curve in C. Then ∂∆ contains a critical point of f .

Proof. Assume there are no critical points on ∂∆. Then f is univalent in a neighbor-
hood of the closed disk ∆. Take a conformal isomorphism ϕ : C r ∆ → C r D. The
map g := ϕ ◦ f ◦ ϕ−1 is well-defined and holomorphic in an outer neighborhood of
the unit circle T. By Schwarz Reflection Principle, g extends holomorphically to an
annular neighborhood of T. In particular, g : T → T is a real-analytic diffeomorphism
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and its rotation number is easily seen to be θ. Since θ is assumed Diophantine, Theo-
rem 2.6 shows that g is analytically conjugate to Rθ on T and hence on a neighborhood
of the circle. Pulling this neighborhood back by ϕ, it follows that f is conjugate to
Rθ in an outer neighborhood of ∂∆. This contradicts the maximality of the Siegel
disk ∆. �

Remark 2.9. The assumptions that f is entire and ∂∆ is a Jordan curve are not
essential. In fact, the theorem holds if we only assume that ∂∆ is a compact subset
of the plane on which f acts injectively (see [H2] and compare [P] and [Z2]). The
injectivity assumption can be dispensed with when the rotation number is of bounded
type [GS].

3. The families Ep,q and Ep,q(θ)

3.1. Generalities. First consider the family Ep,q of all non-constant entire maps of
the form

(3.1) f(z) = P (z) exp(Q(z)),

where P and Q are polynomials of degrees p and q, respectively. Thus, f is polynomial
if q = 0 and transcendental if q > 0. Counting multiplicities, f has p zeros and p+q−1
critical points (the roots of the polynomial equation P ′ + PQ′ = 0). Note that the

representation (3.1) is not quite unique. In fact, another pair P̂ , Q̂ represents the

same f if and only if P̂ = e−cP and Q̂ = Q+ c for some constant c ∈ C.

It will be useful to have a simple characterization for the entire maps in the family
Ep,q. Recall that the growth order of an entire map f : C → C is defined by

lim sup
r→+∞

log logM(f, r)

log r
,

where M(f, r) := sup|z|=r |f(z)|. For example, the growth order of every map in Ep,q

is q.

Lemma 3.1. Suppose f : C → C is an entire map of finite growth order, with p zeros
and p+ q − 1 critical points counting multiplicities. Then f ∈ Ep,q.

Proof. Let P be a polynomial of degree p with the same zeros of the same multiplicities
as f . The singularities of f/P are removable and the resulting entire map is nowhere
vanishing. It follows that f = P exp(Q) for some entire function Q.

The growth order of f and f/P are the same, so exp(Q) must be of finite growth
order by the assumption. It easily follows that Q must be a polynomial of some
degree d. The number p+ d− 1 of critical points of f is by the assumption equal to
p+ q − 1. Hence d = q and f ∈ Ep,q, as required. �

Corollary 3.2. Suppose g : C → C is entire and there are quasiconformal maps
ϕ, ϕ̂ : C → C which fix 0 such that ϕ−1 ◦ g ◦ ϕ̂ ∈ Ep,q. Then g ∈ Ep,q.
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Proof. Clearly g has p zeros and p + q − 1 critical points counting multiplicities. By
Lemma 3.1 it suffices to check that g has finite growth order. Let f := ϕ−1 ◦ g ◦ ϕ̂.
As quasiconformal maps, ϕ and ϕ̂ satisfy Hölder conditions of the form

C1|z|1/K ≤ |ϕ̂(z)| and |ϕ(z)| ≤ C2|z|K

for large |z|, where C1, C2 > 0 and K > 1 are constants. It follows from ϕ ◦ f = g ◦ ϕ̂
that

M(g, r) ≤ C2(M(f, C3r
K))K for large r,

where C3 = C−K
1 . This shows that the growth order of g is at most K times that of

f , that is at most Kq. �

We will need a few general facts about mapping properties of elements of Ep,q.
We begin with the following version of the “monodromy theorem,” a standard result
which is included here for convenience.

Theorem 3.3. Suppose f : C → C is a non-constant entire map, V is a domain
containing no asymptotic value of f , and U is a connected component of f−1(V )
containing no critical point of f . Then f : U → V is a covering map.

Recall that v ∈ C is an asymptotic value of f if there is a path η : [0, 1) → C such
that limt→1 η(t) = ∞ and limt→1 f(η(t)) = v.

Proof. The map f : U → f(U) is a local homeomorphism with the curve lifting
property, so it must be a covering. Assume by way of contradiction that f(U) 6= V ,
and choose a path η : [0, 1) → f(U) such that a := limt→1 η(t) ∈ ∂f(U) ∩ V . Let
η̂ : [0, 1) → U be any lift of η. Since a ∈ V is not an asymptotic value, η̂(t) cannot
tend to ∞ as t → 1. Hence η̂ must have a finite accumulation point â ∈ U where
f(â) = a. Now if â ∈ U then a ∈ f(U), and if â ∈ ∂U then a ∈ f(∂U) ⊂ ∂V . In
either case we reach a contradiction, so f(U) = V . �

Corollary 3.4. Suppose f : C → C is a non-constant entire map, V is a domain
containing no asymptotic value of f , and U is a connected component of f−1(V )
containing at most finitely many critical points of f . Then f(U) = V .

Proof. Let C be the finite (possibly empty) set of critical points of f in U . By
Theorem 3.3, f : U r f−1(f(C)) → V r f(C) is a covering map. In particular, f
maps U r f−1(f(C)) onto V r f(C), from which it follows that f(U) = V . �

Now let f = P exp(Q) ∈ Ep,q with q = degQ > 0. To study the behavior of the
transcendental map f near infinity, it will be convenient to introduce the following
notion. Since the polynomial Q acts like z 7→ zq in suitable coordinates near ∞, there
are 2q equally spaced rays coming together at ∞ along which Re(Q) = 0. We call
these the neutral directions of f at infinity. They divide a punctured neighborhood
of ∞ into q positive sectors in which Re(Q) > 0 interjected with q negative sectors in
which Re(Q) < 0 (see Fig. 3).
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Figure 3. Positive and negative sectors of a map f ∈ Ep,q near ∞;
here q = 3.

∞

Theorem 3.5. Every f ∈ Ep,q with q > 0 has a unique asymptotic value at 0.

Proof. Clearly 0 is an asymptotic value. Suppose by way of contradiction that v 6= 0
is an asymptotic value and choose a path η : [0, 1) → C such that η(t) → ∞ and
f(η(t)) → v as t → 1. When P is constant, this gives exp(Q(η(t))) → v/P 6= 0,
which shows that the path t 7→ Q(η(t)) has a well-defined limit as t → 1, which is
impossible since limt→1Q(η(t)) = ∞. So let us assume for the rest of the proof that
p = degP > 0.

Since f(z) → ∞ as z → ∞ in each positive sector, we see that η(t) must be
contained in the closure of a negative sector for all t close to 1. Hence, there is
a continuous branch of the path t 7→ log(P (η(t))) whose imaginary part remains
bounded. Since

f(η(t)) = P (η(t)) exp(Q(η(t))) → v 6= 0

as t→ 1, it follows that the path

t 7→ logP (η(t)) +Q(η(t))

has a well-defined limit as t→ 1. Hence,

Q(η(t))

logP (η(t))
→ −1 as t→ 1.

This is impossible because as t → 1 the size of the numerator is comparable to
|η(t)|q while the denominator, having bounded imaginary part, has size comparable
to log |P (η(t))|, which in turn is comparable to log |η(t)|. �

Corollary 3.6. Suppose f ∈ Ep,q with q > 0. If f(0) = 0, then each iterate f ◦k has
a unique asymptotic value at 0.

3.2. Covering properties of maps in Ep,q. We continue assuming f = P exp(Q) ∈
Ep,q with q > 0. Let c be a critical point of f such that f(c) = 0. Then c is a root
of the equations P ′ + PQ′ = P = 0, that is, a common root of P and P ′. Hence the
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number k of such critical points counting multiplicities is at most p− 1. Since there
are p + q − 1 critical points altogether, it follows that f has p + q − 1 − k ≥ q > 0
critical points counting multiplicities that are not mapped to 0. Let C denote the
collection of these critical points and V := f(C) be the collection of the corresponding
critical values in C∗. For each v ∈ V, take a smooth ray Lv in C∗ from v to ∞, and
arrange that the Lv’s be disjoint for distinct v’s. Each component of f−1(Lv) is either
a non-critical ray, i.e., a ray from a non-critical preimage of v to ∞, or a “bouquet”
of d critical rays from a critical preimage c of v to ∞, where d = d(c) > 1 is the
local degree of f at c. Evidently, a non-critical ray does not separate the plane but
each bouquet of d critical rays separates the plane into d connected components. An
easy induction on the cardinality of C then shows that the union of all such bouquets
separates the plane into

1 +
∑

c∈C

(d(c) − 1) = p+ q − k

connected components. Setting

L :=
⋃

v∈V

Lv ∪ {0} and W := C r f−1(L),

it follows that W decomposes into p + q − k unbounded connected components
W1, . . . ,Wp+q−k. By Theorem 3.3,

(3.2) f : Wj → C r L

is a covering map for each 1 ≤ j ≤ p+ q − k. As C r L is conformally isomorphic to
the punctured disk, it follows that each Wj is isomorphic to the punctured disk or to
the upper half-plane.

• Case 1. The degree d of (3.2) is finite. Then Wj is conformally isomorphic
to the punctured disk. Setting πd(z) := zd, it follows that there is a covering space
isomorphism

(3.3) Wj
ϕ

//

f

%%K

K

K

K

K

K

K

K

K

K

K

C r π−1
d (L)

πd

��

C r L

which induces a homeomorphism between ∂Wj and π−1
d (L) except that every critical

ray pair in ∂Wj is identified under ϕ with a single ray in π−1
d (L). In particular, Wj

is bounded by finitely many rays and is punctured at a unique preimage of 0 where
the local degree of f is d.

• Case 2. The degree of (3.2) is infinite. Then Wj is conformally isomorphic to
the upper half-plane. Setting E(z) := exp(z), it follows that there is a covering space
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isomorphism

(3.4) Wj
ϕ

//

f

%%L

L

L

L

L

L

L

L

L

L

L

C r E−1(L)

E
��

C r L

which induces a homeomorphism between ∂Wj and E−1(L) except that every critical
ray pair in ∂Wj is identified under ϕ with a single ray in E−1(L). In particular, Wj

is bounded by countably many rays and does not contain a preimage of 0.

Thus, there is a one-to-one correspondence between the preimages of 0 and the
Wj ’s of type (3.3). Since 0 has p − k distinct preimages, it follows that p− k of the
Wj ’s are of type (3.3) and q of them are of type (3.4).

The above covering space description is used in the proof of the following two
lemmas which we will need in §8:

Lemma 3.7. Let f ∈ Ep,q with q > 0. Suppose V is a simply-connected domain
in C∗ with ∂V locally-connected, and U is a connected component of f−1(V ). Then
f : U → V is a proper map.

Proof. By Corollary 3.4 and Theorem 3.5, f(U) = V . Since ∂V is locally-connected,
we can choose the rays Lv in the above construction so that V r L is still a simply-
connected domain. It follows that each component of π−1

d (V rL) (resp. E−1(V rL))
is simply-connected and maps conformally to V r L under πd (resp. E). Take a ray
R in C r V ∪ L from 0 to ∞. The d lifts π−1

d (R) together with the origin divide the
plane into d sectors each containing precisely one component of π−1

d (V rL). Similarly,
the lifts E−1(R) divide the plane into countably many strips each containing precisely
one component of E−1(V r L). It follows that distinct components of π−1

d (V r L)
(resp. E−1(V r L)) can be separated by a simple arc in π−1

d (C r V ∪ L) (resp.
E−1(C r V ∪ L)). Using the fact that for each j the covering map f : Wj → C r L
satisfies one of the isomorphisms (3.3) or (3.4), we see that the components Uij of
f−1(VrL)∩Wj are simply-connected and f : Uij → VrL is a conformal isomorphism.
Furthermore, by the above remark, any two such components can be separated by a
simple arc in Wj which avoids f−1(V ).

Now let j be such that U ∩Wj 6= ∅. We claim that U ∩Wj = Uij for a unique i.
To see this, suppose Uij and Ukj are both contained in U for some i 6= k. Separate
Uij from Ukj by a simple arc η in Wj which avoids f−1(V ). Since U is connected,
there is a path in U from a point in Uij to a point in Ukj. This path is bound to
intersect η, contradicting η ∩ f−1(V ) = ∅. Thus, we have proved that whenever U
meets Wj , the intersection U ∩Wj is simply-connected and f : U ∩Wj → V r L is
a conformal isomorphism. Since there are finitely many of the Wj , it easily follows
that f : U → V must be proper. �
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Lemma 3.8. Let f ∈ Ep,q with q > 0 and η be a Jordan curve which winds around
the origin. Then f−1(η) has finitely many components. Furthermore,

(i) If η avoids the critical values of f , each component of f−1(η) is either a Jordan
curve or a simple arc both ends of which tend to ∞. In the latter case, each
end is eventually in the closure of some negative sector and asymptotic to a
neutral direction of f at infinity.

(ii) If η does contain critical values of f , each component of f−1(η) is of the form
cited in (i) except that we must allow finitely many self-intersections at the
critical points.

Proof. Arrange that each ray Lv intersect η in at most one point. The preimages
π−1

d (η) and E−1(η) are clearly connected. Pulling back under the covering space
isomorphism ϕ in (3.3) or (3.4) shows that f−1(η) ∩ Wj consists of finitely many
components. Since there are finitely many of the Wj , this shows finiteness of the
number of components of f−1(η).

Now suppose η avoids the critical values of f and η̂ is a component of f−1(η). Then
η̂ is a one-dimensional submanifold of the plane. Since η̂ is closed in C, it must be a
Jordan curve if it is bounded and a simple arc going to ∞ in both directions if it is
unbounded. In the latter case, the ends of η̂ must eventually lie in the closure of a
negative sector since f(z) → ∞ as z → ∞ in a positive sector. These ends should be
asymptotic to neutral directions, for otherwise their image would tend to 0.

The case where η contains critical values follows from a straightforward modification
of the above argument. �

3.3. The family Ep,q(θ). Now let 0 < θ < 1 be an irrational of bounded type and
consider the subfamily Ep,q(θ) ⊂ Ep,q of the entire maps f which have a Siegel disk of
rotation number θ centered at the origin. The condition f(0) = 0 shows p ≥ 1 and
q ≥ 0, and our assumption that f is non-linear implies q > 0 when p = 1.

It will be convenient to normalize maps in Ep,q(θ) by assuming the following:

• Each f ∈ Ep,q(θ) is uniquely represented as f = P exp(Q), where P (0) =
Q(0) = 0 and P ′(0) = f ′(0) = e2πiθ. This can be achieved by replacing Q by
Q−Q(0) and P by eQ(0)P .

• For each f ∈ Ep,q(θ) the conformal radius of the Siegel disk ∆f is equal to
1. Let ζf : D → ∆f the unique linearizing map which satisfies ζf(0) = 0 and
ζ ′f(0) > 0. For α ∈ C∗, set fα(z) = f(αz)/α. Since

ζfα
(z) =

1

α
ζf

( α

|α|z
)
,
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we can always choose a representative f in each linear conjugacy class such
that ζ ′f(0) = 1. Any two such representatives will then be conjugate by a
rotation.

When the map f is fixed and there is no danger of confusion, we will drop the subscript
f from the notations ∆f , ζf , etc.

For f ∈ Ep,q(θ) and 0 < r < 1, we define

∆r = ∆f,r := ζ(Dr)

γr = γf,r := ζ(Tr)(3.5)

Ωr = Ωf,r :=
⋃

n≥0

f−n(∆r).

Thus, ∆r is an invariant subdisk of ∆ bounded by the real-analytic invariant curve
γr, and Ωr is the smallest totally invariant set containing ∆r.

4. Main constructions

4.1. A quasiconformal reflection. Fix a map f ∈ Ep,q(θ) and a radius 0 < r < 1.
Consider the radii

0 < a := r3/2 < r < b := r1/2 < 1

and the open f -invariant annuli

Aa := ζ(Aa,r)

Ab := ζ(Ar,b)

A := ζ(Aa,b) = Aa ∪ γr ∪Ab

(see Fig. 4). Note that as r → 1, the modulus of Aa, Ab and A tends to zero.

The main construction begins with the choice of an orientation-reversing quasicon-

formal reflection I : Ĉ → Ĉ with the following properties:

• I|γr
= id and I(∆r) = Ĉ r ∆r;

• I : ∆a → Ĉ r ∆b is the unique anti-conformal map normalized by the condi-
tions I(0) = ∞ and I(ζ(a)) = ζ(b).

A priori, these conditions may force I to have a big dilatation (depending on r) inside
the annulus A. But, as it turns out, this will not be a cause for concern.

The choice of such I, of course, is far from unique. In order to have something
explicit to work with, we will adopt the following construction. Suppose ζ̂ : {z :

|z| > b} → C r ∆b is the unique conformal isomorphism such that ζ̂(b) = ζ(b).

By Lemma 2.2, both ζ̂ and the restriction ζ : Db → ∆b have K2
b -quasiconformal

extensions to the sphere, where Kb is the quasicircle constant of the invariant curve
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Figure 4. Some invariant curves and annuli in the Siegel disk ∆.

γa

γb

γr

0
AaAb

∆

ζ(a)

ζ(r)

ζ(b)

γb. Hence the restriction of ζ−1 ◦ ζ̂ to Tb is k-quasisymmetric with k depending only
on Kb. Let ϕ : ∂Ar,b → ∂Ar,b be the homeomorphism which restricts to the identity

on Tr and to ζ−1 ◦ ζ̂ on Tb. Use Lemma 2.1 to extend ϕ to a K-quasiconformal map
Ar,b → Ar,b, where K = K(Kb, r). This allows us to extend ζ̂ to a K-quasiconformal
map {z : |z| > r} → C r ∆r by setting it equal to ζ ◦ ϕ on Ar,b. Denoting by ι the

reflection z 7→ r2/z, we can now define I = ζ̂ ◦ ι◦ζ−1 in ∆r and set I = I−1 elsewhere.

Corollary 4.1. The maximal dilatation of the quasiconformal reflection I constructed
above depends only on r and the quasicircle constant of the invariant curve γb.

Observe that the quasicircle constant of γb generally depends on the radius r as
well as on the map f .

4.2. Symmetrizing f . Next we construct a quasiregular dynamics F : C∗ → Ĉ by
symmetrizing f about the invariant curve γr using the reflection I:

F :=

{
f outside ∆r

I ◦ f ◦ I in ∆r r {0}.
Note that F has a “quasiconformal Herman ring” ∆ ∩ I(∆) containing the invariant
annulus A.

Theorem 4.2. The map F is

(i) holomorphic outside ∆r ∩ F−1(A);
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(ii) symmetric about γr in the sense that F ◦ I = I ◦ F .

Proof. Outside ∆r, F = f is clearly holomorphic. In the open set ∆r r F−1(A),
F = I ◦ f ◦ I is a composition of one holomorphic and two anti-holomorphic maps,
hence is holomorphic. This proves (i).

For (ii), observe that if z /∈ ∆r,

(F ◦ I)(z) = (I ◦ f ◦ I ◦ I)(z) = (I ◦ f)(z) = (I ◦ F )(z),

while if z ∈ ∆r,

(F ◦ I)(z) = (f ◦ I)(z) = (I ◦ I ◦ f ◦ I)(z) = (I ◦ F )(z). �

4.3. Straightening F . Below we show that the symmetric map F constructed above
is quasiconformally conjugate to a holomorphic map.

Theorem 4.3. There exists a measurable conformal structure µ of bounded dilatation

on Ĉ which is invariant under the action of both F and I.

In general, the dilatation of µ depends on the maximal dilatation of I, and a priori
it can grow large as r → 1.

Proof. Define µ on A by setting µ := µ0 on Ab ∪ γr and µ := I∗(µ0) on Aa. Here
µ0 denotes the standard conformal structure of the plane represented by the zero
Beltrami differential. Since F is holomorphic in Ab and F ◦ I = I ◦ F , µ is invariant
under F : A → A. Spread µ along the backward orbit of A by using the iterates of
F , i.e., define

µ := (F ◦n)∗(µ) on F−n(A).

On the rest of Ĉ, set µ = µ0. It is clear from the definition that µ is F -invariant. Using
the symmetry relation F ◦ I = I ◦F again, we see that the conformal structure I∗(µ)
must also be F -invariant. Since I∗(µ) = µ holds in A, it should hold everywhere,
which means µ is I-invariant.

Finally, µ has bounded dilatation on A since I is quasiconformal. The first pull-
back of µ to F−1(A) r A can increase the dilatation because the branch of F used
for pulling back need not be holomorphic. However, all the subsequent pull-backs are
taken using the branches of F which are holomorphic by Theorem 4.2, so they will
not increase the dilatation further. �

According to the Measurable Riemann Mapping Theorem [A], there exists a quasi-

conformal map ξ : Ĉ → Ĉ which solves the Beltrami equation ξ∗(µ0) = µ. Moreover,
ξ is unique once it is normalized by the conditions

ξ(0) = 0, ξ(∞) = ∞ and ξ(ζ(r)) = 1.

Theorem 4.4. The homeomorphism ξ
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(i) is conformal off Ωr, in the sense that ∂ξ = 0 a.e. on the closed set C r Ωr;

(ii) conjugates I to the reflection ι : z 7→ 1/z;

(iii) maps γr homeomorphically to the unit circle.

Proof. The forward f -orbit of every point z outside Ωr is either disjoint from A or
else lands in Ab ∪ γr. In either case, it follows from the construction that µ(z) = 0,
proving (i).

The quasiconformal map ξ̂ := ι ◦ ξ ◦ I : Ĉ → Ĉ also solves the Beltrami equation
ξ̂∗(µ0) = µ:

ξ̂∗(µ0) = (I∗ ◦ ξ∗ ◦ ι∗)(µ0) = (I∗ ◦ ξ∗)(µ0) = I∗(µ) = µ.

Since ξ̂ fixes 0 and ∞ and sends ζ(r) to 1, we have ξ̂ = ξ by uniqueness. This proves
(ii).

The assertion (iii) follows immediately since each of these Jordan curves is charac-
terized as the fixed point set of the corresponding reflection. �

Now consider the conjugate quasiregular map G : C∗ → Ĉ defined by

(4.1) G := ξ ◦ F ◦ ξ−1.

Theorem 4.5. The map G

(i) is holomorphic;

(ii) commutes with the reflection ι : z 7→ 1/z, hence preserves the unit circle T;

(iii) has a Herman ring ξ(∆ ∩ I(∆)) of rotation number θ with T as an invariant
curve. In particular, G restricts to an orientation-preserving real-analytic
diffeomorphism of T with rotation number θ.

(iv) has p− 1 zeros, all in C r D, and p− 1 poles, all in D
∗.

Recall that the number p in (iv) is the degree of the polynomial P in the represen-
tation f = P exp(Q) ∈ Ep,q(θ). If p = 1, (iv) is understood as saying that G has no
zeros or poles.

Proof. For (i), note that F ∗(µ) = µ = ξ∗(µ0), hence G∗(µ0) = µ0. Thus, as a quasireg-
ular map which preserves the standard conformal structure, G must be holomorphic.
Assertion (ii) follows from Theorems 4.2 and 4.4:

G ◦ ι = ξ ◦ F ◦ ξ−1 ◦ ι = ξ ◦ F ◦ I ◦ ξ−1

= ξ ◦ I ◦ F ◦ ξ−1 = ι ◦ ξ ◦ F ◦ ξ−1 = ι ◦G.
Assertion (iii) follows easily from the corresponding property of F . For (iv), observe
that by the definition of F and the normalization ξ(0) = 0,

G−1(0) = ξ(F−1(0)) = ξ(f−1(0) r {0}) = ξ(P−1(0) r {0}).
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Since 0 is a simple root of P , it follows that G has p − 1 zeros in C r D counting
multiplicities, and the number of poles is the same by symmetry. �

4.4. Surgery. We now perform a surgery on G to turn it back into an entire function,
its Herman ring back into a Siegel disk. The idea is roughly to “cut out” D, “glue
in” a quasiconformal Siegel disk instead, and straighten the resulting action in order
to realize it as an entire map in Ep,q(θ).

By Theorem 4.5, G : T → T is a real-analytic diffeomorphism with rotation number
θ, which is assumed to be an irrational of bounded type. By Herman-Swiatek’s
Theorem 2.7, the normalized linearizing map h : T → T of G is quasisymmetric. Let
H : D → D be the standard quasiconformal extension of h constructed in §2.1 which
satisfies H(0) = 0, H(1) = 1. Define the modified quasiregular map Ĝ : C → C by

Ĝ :=

{
G outside D

H−1 ◦Rθ ◦H in D.

We claim that Ĝ admits an invariant conformal structure ν of bounded dilatation. In
fact, since Rθ is holomorphic, ν := H∗(µ0) is Ĝ-invariant in D (as before, µ0 denotes
the standard conformal structure of the plane). We spread ν along the backward
orbit of D by setting

ν := (Ĝ◦n)∗(ν) on Ĝ−n(D).

On the rest of C, we set ν = µ0. By the construction, ν is Ĝ-invariant. Moreover,
since the branches of Ĝ = G used to spread ν around are all holomorphic, the maximal
dilatation of ν on C is the same as its maximal dilatation on D, which is bounded
since H is quasiconformal.

By the Measurable Riemann Mapping Theorem, there is a quasiconformal map
ψ : C → C which fixes the origin and solves the Beltrami equation ψ∗(µ0) = ν.
Consider the conjugate map g : C → C defined by

g := ψ ◦ Ĝ ◦ ψ−1.

Since Ĝ∗(ν) = ν = ψ∗(µ0), the definition of g shows that g∗(µ0) = µ0, which means
g is an entire function. It clearly has a Siegel disk ∆g of rotation number θ centered
at the origin which contains ψ(D) as a proper invariant subdisk.

To make g unique, we normalize ψ in the following way: Since both H and ψ pull
µ0 back to ν on D, the composition ψ ◦H−1 is conformal. Hence, we can choose ψ as
the unique quasiconformal solution of ψ∗(µ0) = ν which satisfies

(4.2) ψ(0) = 0 and (ψ ◦H−1)′(0) = r.

Theorem 4.6. The quasiconformal map ϕ := ψ ◦ ξ : C → C has the following
properties:
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(i) ϕ ◦ f = g ◦ ϕ off ∆f,r.

(ii) ϕ is conformal off Ωf,r.

(iii) ϕ(γf,r) = γg,r.

(iv) ϕ = ζg ◦ ζ−1
f on γf,r.

Proof. For (i), simply note that on C r ∆f,r,

ϕ ◦ f = ψ ◦ ξ ◦ f
= ψ ◦ ξ ◦ F
= ψ ◦G ◦ ξ
= ψ ◦ Ĝ ◦ ξ
= g ◦ ψ ◦ ξ = g ◦ ϕ,

where the fourth equality holds since by Theorem 4.4, ξ maps the complement of ∆f,r

to the complement of D.

Next, ξ is conformal off Ωf,r by Theorem 4.4 and ψ is conformal off the image

ξ(Ωf,r) =
⋃

n≥0 Ĝ
−n(D) by the construction of ν. This proves (ii).

Since ξ(γf,r) = T, (iii) is equivalent to showing that ψ(T) = γg,r. Observe that ψ(T)
is a g-invariant curve in the Siegel disk ∆g, hence ψ(T) = γg,s for some 0 < s < 1.
Since the annulus ∆f r∆f,r is disjoint from Ωf,r, part (ii) shows that ϕ : ∆f r∆f,r →
∆g r ∆g,s is a conformal isomorphism. Hence the two annuli have the same modulus
and r = s.

Finally, the composition z 7→ (ψ ◦ H−1)(z/r) maps Dr conformally to ∆g,r, fixes
the origin and has derivative 1 there by (4.2). The linearizing map ζg has the same
properties, so by uniqueness ζg(z) = (ψ ◦H−1)(z/r) whenever |z| ≤ r. On the other
hand, (1/r)(ξ ◦ ζf)−1 : T → T conjugates G to Rθ and fixes 1. By uniqueness,
(1/r)(ξ ◦ ζf)−1 = h = H on the unit circle. It follows that when |z| = r,

(ϕ ◦ ζf)(z) = (ψ ◦ ξ ◦ ζf)(z) = (ψ ◦H−1)(z/r) = ζg(z),

which proves (iv). �

For future reference, let us record the following fact which was established in the
course of the above proof:

Corollary 4.7. ζg(z) = (ψ◦H−1)(z/r) whenever |z| ≤ r. In particular, the conformal
radius of ∆g is 1.

Theorem 4.8. g ∈ Ep,q(θ).
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Figure 5. The construction of the surgery map Sr : f 7→ g.
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Proof. Define

ϕ̂ :=

{
ϕ off ∆f,r

g−1 ◦ ϕ ◦ f on ∆f,r,

where g−1 refers to the branch of the inverse mapping ∆g to itself. Evidently ϕ̂ is
quasiconformal and ϕ ◦ f = g ◦ ϕ̂. It follows from Corollary 3.2 that g ∈ Ep,q. Since g
has a Siegel disk of rotation number θ and conformal radius 1 centered at 0, we have
g ∈ Ep,q(θ). �

Remark 4.9. The map ϕ is not a conjugacy between f and g inside ∆f,r unless the
extension H of h is chosen so that

H =
1

r
(ξ ◦ ζf)−1 in D.
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The reason we did not choose this extension is the dilatation issue: a priori, the
maximal dilatation of ξ, hence that of (1/r)(ξ◦ζf)−1, depends on r while our argument
is heavily based on the fact that there is a quasiconformal extension H whose maximal
dilatation is independent of r (Corollary 5.7 below).

Definition 4.10. Let 0 < r < 1. The surgery map Sr : Ep,q(θ) → Ep,q(θ) is the one
which assigns to each f the entire function g constructed above.

Fig. 5 summarizes various steps in the construction of the surgery map Sr.

5. A priori estimate of the dilatation

Let f ∈ Ep,q(θ) and let g := Sr(f) ∈ Ep,q(θ) be the result of surgery on f , as
described in §4. In this section we prove that the invariant curve γg,r is a K-quasicircle
for some K > 1 independent of the choice of f and r (Corollary 5.8). This uniformity
will be the essential ingredient of the proof of the Main Theorem.

5.1. The explicit form of G. Consider the holomorphic map G : C
∗ → Ĉ con-

structed in §4.3. By Theorem 4.5, G has p − 1 zeros {z1, . . . , zp−1}, where |zj| > 1
and each root is repeated according to its multiplicity. By symmetry, there are p− 1
poles at {1/z1, . . . , 1/zp−1}. Consider the finite Blaschke product

(5.1) B(z) :=

p−1∏

j=1

(
z − zj

1 − zj z

)

which has the same zeros and poles of the same multiplicities as G. When p = 1,
G has no zeros or poles and we agree to set B = 1. In either case, the quotient
S(z) := G(z)/B(z) extends to a holomorphic map in C

∗ without zeros or poles.

Lemma 5.1. The map S : C∗ → C∗ has the form

S(z) = λ zn exp(α(z) − α(1/z)),

where |λ| = 1, n is an integer, and α : C → C is an entire function with α(0) = 0.

Proof. As a holomorphic map C∗ → C∗, S has a unique representation

(5.2) S(z) = λ zn exp(α(z) + β(1/z)),

where λ 6= 0, n is an integer, and α, β are entire functions with α(0) = β(0) = 0.
Since G and B commute with the reflection z 7→ 1/z, so does their ratio S. Imposing
this condition on the representation (5.2), we obtain

λ zn exp(α(z) + β(1/z)) =
1

λ
zn exp(−α(1/z) − β(z))

for all z. Hence, by uniqueness,

|λ| = 1 and β(z) = −α(z). �
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Lemma 5.2. The exponent n in Lemma 5.1 is equal to p.

Proof. Apply the Argument Principle to the function

G(z) = B(z)S(z) = λ znB(z) exp(α(z) − α(1/z))

on the unit circle:

1

2πi

∫

|z|=1

G′(z)

G(z)
dz = n+

1

2πi

∫

|z|=1

B′(z)

B(z)
dz +

1

2πi

∫

|z|=1

d

dz
(α(z) − α(1/z)) dz.

The left side is equal to 1 since G : T → T is an orientation-preserving homeomor-
phism. The middle term on the right is −(p − 1) since the Blaschke product B has
p− 1 poles and no zeros in D. The term on the far right is zero since the integrand
has a holomorphic primitive in a neighborhood of T. Thus, n = p as required. �

Lemma 5.3. The entire function α of Lemma 5.1 is a polynomial of degree q.

Proof. When q = 0, the map F = f is a polynomial in a neighborhood of infinity, so
∞ is a pole of G. In this case α vanishes identically and the lemma holds. Let us then
assume q > 0. Since F = f in a neighborhood of infinity, the growth order of F is q,
hence the quasiconformally conjugate map G must have finite positive growth order
(compare the proof of Corollary 3.2). It follows that exp(α) is an entire function of
finite order, so α is a polynomial of some degree d > 0. The number 2(p + q − 1) of
critical points of F must match the number 2(p+ d− 1) for G, hence d = q. �

Corollary 5.4. The holomorphic map G : C∗ → Ĉ has the form

(5.3) G(z) = λ zp B(z) exp(α(z) − α(1/z)),

where |λ| = 1, B is a degree p−1 Blaschke product as in (5.1) with all zeros in CrD

(constant function 1 if p = 1) and α is a polynomial of degree q with α(0) = 0.

5.2. Linearizing G on the unit circle. The restriction G : T → T is an orientation-
preserving real-analytic diffeomorphism of bounded type rotation number θ. By The-
orem 2.7, the normalized linearizing map h : T → T of G is k-quasisymmetric.
Moreover, k is bounded by a constant which depends only on θ, the modulus of an
annular neighborhood of T which stays away from the zeros and poles of G, and the
size of zG′(z)/G(z) on such an annulus. We begin by estimating how close the poles
(equivalently zeros) of the Blaschke product B in (5.3) can be to the unit circle.

Theorem 5.5. Let p > 1 so the Blaschke product B in (5.3) is non-constant. There
exists a constant λ = λ(p, q) > 1 such that the zeros {zj} of B satisfy |zj | > λ for all
1 ≤ j ≤ p− 1.

As the proof will show, one can take λ = (2pq + q + 1)/(2pq + q − 1).
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Proof. First assume q > 0 and take an integer 1 ≤ k ≤ q. Set R(z) := α(z)−α(1/z).
Logarithmic differentiation of

G(z) = λ zp B(z) exp(R(z))

yields

(5.4)
zkG′(z)

G(z)
= p zk−1 +

zkB′(z)

B(z)
+ zkR′(z).

Integrating over the unit circle, we obtain

(5.5)
1

2πi

∫

|z|=1

zkG′(z)

G(z)
dz =

1

2πi

∫

|z|=1

zkB′(z)

B(z)
dz +

1

2πi

∫

|z|=1

zkR′(z) dz.

The Argument Principle applied to the formula of B in (5.1) yields

(5.6)
1

2πi

∫

|z|=1

zkB′(z)

B(z)
dz = −

p−1∑

j=1

1

zj
k
.

To compute the integral of zkR′(z) over the unit circle, let α(z) = a1 z + · · · + aq z
q,

so

R(z) = −aq

zq
− · · · − a1

z
+ a1 z + · · ·+ aq z

q,

and

(5.7) zkR′(z) = q aq z
k−q−1 + · · ·+ a1 z

k−2 + a1 z
k + · · · + q aq z

k+q−1.

Thus,

(5.8)
1

2πi

∫

|z|=1

zkR′(z) dz = k ak.

Substituting (5.6) and (5.8) into (5.5) and using the fact that |zi| > 1, we obtain

(5.9) k |ak| =

∣∣∣∣∣
1

2πi

∫

|z|=1

zkG′(z)

G(z)
dz +

p−1∑

j=1

1

zj
k

∣∣∣∣∣ ≤
1

2π

∫ 2π

0

|G′(eit)| dt+ p− 1.

Since G : T → T is an orientation-preserving diffeomorphism, we have zG′(z)/G(z) =
d(logG(z))/d(log z) > 0 on the unit circle. This implies

(5.10)
zG′(z)

G(z)
=

∣∣∣∣
zG′(z)

G(z)

∣∣∣∣ = |G′(z)| whenever |z| = 1.

Hence, by another application of the Argument Principle,

(5.11)
1

2π

∫ 2π

0

|G′(eit)| dt =
1

2π

∫ 2π

0

eitG′(eit)

G(eit)
dt =

1

2πi

∫

|z|=1

G′(z)

G(z)
dz = 1.

Putting (5.9) and (5.11) together, we obtain the estimate

(5.12) k |ak| ≤ p for all 1 ≤ k ≤ q.
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This immediately gives an L∞ estimate for zR′(z) = 2 Re(zα′(z)) on the unit circle.
In fact, by (5.7) with k = 1 and (5.12),

(5.13) sup
|z|=1

|zR′(z)| ≤ 2

q∑

j=1

j |aj| ≤ 2 p q.

This, in turn, allows an L∞ estimate for the logarithmic derivative zB′(z)/B(z) on
the unit circle: Start with (5.4) with k = 1:

zG′(z)

G(z)
= p +

zB′(z)

B(z)
+ zR′(z).

On the unit circle, each term in this identity is real, with the left side being positive
by (5.10) and the absolute value of the term on the far right being bounded by 2pq
by (5.13). Hence,

−zB
′(z)

B(z)
≤ p (2q + 1) whenever |z| = 1.

A brief computation using (5.1) shows that

(5.14) −zB
′(z)

B(z)
=

p−1∑

j=1

z(|zj |2 − 1)

(z − zj)(1 − zjz)
,

so

−zB
′(z)

B(z)
=

p−1∑

j=1

|zj |2 − 1

|z − zj |2
whenever |z| = 1.

It follows that for each 1 ≤ j ≤ p− 1,

|zj| + 1

|zj| − 1
= sup

|z|=1

|zj|2 − 1

|z − zj|2
≤ sup

|z|=1

−zB′(z)

B(z)
≤ p (2q + 1).

This gives |zj| ≥ λ, with

λ :=
2pq + p + 1

2pq + p− 1
> 1.

In the polynomial case where q = 0, the rational function R vanishes identically, and
the same argument shows that λ = (p+ 1)/(p− 1) will work. �

Theorem 5.6. There exist constants δ = δ(p, q) > 1 and M = M(p, q) > 0 such that
the map G in (5.3) has no zeros or poles in the annulus δ−1 < |z| < δ, and satisfies

∣∣∣∣
zG′(z)

G(z)

∣∣∣∣ ≤M whenever δ−1 < |z| < δ.
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Proof. Let λ = λ(p, q) be the constant given by Theorem 5.5. Set δ :=
√
λ if p > 1

and δ := 2 if p = 1 (in which case the Blaschke product B in (5.3) is identically 1).
By Theorem 5.5, G has no zeros or poles in the annulus δ−1 < |z| < δ. To obtain
the bound M , first assume p > 1, q > 0. By Theorem 5.5 the zeros {zj} of B satisfy
|zj | ≥ δ2. Hence, when δ−1 < |z| < δ,

∣∣∣∣
z(|zj |2 − 1)

(z − zj)(1 − zjz)

∣∣∣∣ =
|zj | − 1

|z − zj |
· |zj| + 1

|z−1 − zj |

≤ |zj | − 1

|zj | − δ
· |zj| + 1

|zj| − δ

≤ δ2 − 1

δ2 − δ
· δ

2 + 1

δ2 − δ

=
δ4 − 1

δ2(δ − 1)2
.

It follows from (5.14) that

(5.15) sup
δ−1<|z|<δ

∣∣∣∣
zB′(z)

B(z)

∣∣∣∣ ≤M1 :=
(p− 1)(δ4 − 1)

δ2(δ − 1)2
.

On the other hand, (5.7) and (5.12) together show that

(5.16) sup
δ−1<|z|<δ

|zR′(z)| ≤M2 := 2p

q∑

j=1

δj =
2p (δq+1 − δ)

δ − 1
.

Now (5.4) with k = 1 shows that |zG′(z)/G(z)| is bounded by M := p+M1 +M2 on
the annulus δ−1 < |z| < δ.

In the polynomial case p > 1, q = 0 the rational function R is identically zero and
the above argument shows that we can take M := p + M1. In the case p = 1, q > 0
the Blaschke product B is identically 1 and we can take M := 1 +M2. �

Herman-Swiatek’s Theorem 2.7 now implies:

Corollary 5.7. The normalized linearizing map h : T → T of G is k-quasisymmetric
for a constant k depending only on p, q, θ. Hence, its standard extension H : D → D

is K-quasiconformal, where K depends only on p, q, θ.

Corollary 5.8. Suppose f ∈ Ep,q(θ) and g := Sr(f). Then, the g-invariant curve γg,r

is a K-quasicircle for some K which depends only on p, q, θ.

Proof. By Theorem 4.6, γg,r = ψ(T), where the maximal dilatation of the quasicon-
formal map ψ is the same as that of the standard extension H : D → D. Hence the
result follows from Corollary 5.7. �
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6. Maps with no free capture spot

Ideally, one would hope that the surgery on f ∈ Ep,q(θ) as described in §4 would
produce an entire map Sr(f) which is conformally conjugate to f . However, this type
of “rigidity” for a general f is wishful thinking. In reality, f and Sr(f) may not be
even topologically conjugate. The problem arises when f has critical orbits which hit
its Siegel disk ∆f .

6.1. Captured critical points. A critical point c of f ∈ Ep,q(θ) is said to be captured

by ∆f if its forward orbit eventually hits ∆f . In this case, there is a smallest integer
n ≥ 1 such that ĉ := f ◦n(c) ∈ ∆f . We call ĉ a capture spot of f in ∆f ; if ĉ 6= 0,
we call it a free capture spot. In this terminology, f has no free capture spot if the
forward orbit of each critical point of f is either disjoint from ∆f or lands directly at
the fixed point 0.

Recall that ζf : D → ∆f is the unique linearizing map of f which is normalized so
that ζ ′f(0) = 1. By the conformal position of z ∈ ∆f is meant the point ζ−1

f (z) in the
unit disk.

6.2. Rigidity. The following theorem shows that the conformal positions of the cap-
ture spots are the only obstructions to promoting a quasiconformal conjugacy to a
conformal one along the backward orbit of the Siegel disk.

Theorem 6.1. Suppose f, g ∈ Ep,q(θ), 0 < r < 1 and ϕ : C → C is a quasiconformal
map such that

(i) ϕ ◦ f = g ◦ ϕ on C r ∆f,r.

(ii) ∂ϕ = 0 a.e. on C r Ωf,r.

(iii) ϕ = ζg ◦ ζ−1
f on γf,r.

Let {ĉ1, . . . , ĉm} be the capture spots of f in ∆f,r and {ê1, . . . , êm} be the corresponding
capture spots of g in ∆g,r. If ĉj and êj have the same conformal position for each j,
then f = g.

The capture spot êj “corresponds” to ĉj in the following sense: if ĉj = f ◦n(cj) for a
critical point cj of f , then êj = g◦n(ej), where ej = ϕ(cj).

Proof. We will modify ϕ along Ωf,r in order to promote it to a conformal conjugacy
Φ between f and g. Set Φ := ϕ on C r Ωf,r and define

(6.1) Φ := ζg ◦ ζ−1
f in ∆f,r.

Clearly Φ : ∆f,r → ∆g,r is a conformal conjugacy between f and g, which, by the
condition (iii), is continuous along the invariant curve γf,r.

We extend Φ to the remaining part of Ωf,r as follows. For each non-zero ĉj , consider
the radial segment in D from ζ−1

f (ĉj) out to the boundary T and let J be the union
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of all such segments together with the segment [0, 1] ⊂ R. Set L := ζf(J). Do the
same for g, i.e., consider the radial segments from ζ−1

g (êj) to T for each non-zero êj ,
let J ′ be the union of all such segments together with [0, 1], and set L′ := ζg(J

′).
Since ĉj and êj have the same conformal position for each j, we have J = J ′ and so
L′ = Φ(L).

Now let n ≥ 1 and U be a connected component of f−n(∆f,r) r f−n+1(∆f,r). The
slit disk ∆f,r r L is simply-connected and contains no critical or, by Corollary 3.6,
asymptotic value of the iterate f ◦n : U → ∆f,r. It follows from Theorem 3.3 that the
components {Vi} of U r f−n(L) are all simply-connected and f ◦n : Vi → ∆f,r r L
is a conformal isomorphism for each i. Let U ′ := ϕ(U) and denote by {V ′

i } the
components of U ′ rg−n(L′), where the labeling is chosen so that ∂V ′

i ∩∂U ′ = ϕ(∂Vi∩
∂U) = Φ(∂Vi∩∂U). Then, by the same reasoning, g◦n : V ′

i → ∆g,r rL′ is a conformal
isomorphism for each i. Since Φ(L) = L′, we can define Φ : Vi → V ′

i unambiguously
by

Φ := g−n ◦ Φ ◦ f ◦n.

Putting these partially defined maps Vi → V ′
i together, we obtain a homeomorphism

Φ : Urf−n(L) → U ′rg−n(L′). Using continuity of Φ along L and γf,r, it is easily seen
that Φ extends to a homeomorphism U → U ′ which is compatible with the boundary
map Φ = ϕ : ∂U → ∂U ′. Moreover, since this homeomorphism is conformal off the
removable set f−n(L) ∩ U of analytic arcs, it must be conformal.

Repeating this process over all components of f−n(∆f,r)rf
−n+1(∆f,r) for all n ≥ 1,

we obtain a global conjugacy Φ : C → C between f and g which is conformal in Ωf,r

and coincides with ϕ on C r Ωf,r. To show Φ is conformal everywhere, we can for
example invoke the following well-known result in quasiconformal theory (see [B] or
[DH]):

Bers Sewing Lemma. Suppose E ⊂ C is closed, U and V are open neighborhoods
of E, and ϕ : U → ϕ(U) and Φ : V → Φ(V ) are homeomorphisms such that
• ϕ is K1-quasiconformal;
• Φ|V rE is K2-quasiconformal;
• ϕ = Φ on ∂E.
Then the map

ϕ∐ Φ :=

{
ϕ on E

Φ on V rE

is max{K1, K2}-quasiconformal in V and ∂(ϕ∐ Φ) = ∂ϕ a.e. on E.

Applying this lemma to our maps ϕ,Φ with U = V = C and E = C r Ωf,r, we

see that Φ = ϕ ∐ Φ is quasiconformal, with ∂Φ = 0 a.e. on C r Ωf,r by (ii) and
everywhere in Ωf,r by conformality. Thus, Φ is a 1-quasiconformal map of the plane;
as such it is a conformal automorphism. As Φ fixes the origin, it must have the form
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Φ(z) = αz for some α ∈ C∗. Since the conformal radius of both ∆f and ∆g is 1, we
obtain α = Φ′(0) = ζ ′g(0)/ζ ′f(0) = 1. �

Corollary 6.2. Suppose f ∈ Ep,q(θ) has no free capture spot in ∆f,r for some
0 < r < 1. Then Sr(f) = f .

Proof. Apply Theorem 6.1 to f , g := Sr(f), and the quasiconformal map ϕ given by
Theorem 4.6. �

Proof of the Main Theorem when f has no free capture spot. By Corollary 5.8 and
Corollary 6.2, for every 0 < r < 1 the f -invariant curve γf,r is a K-quasicircle for
some K depending only on p, q, θ, hence independent of r. Hence ∂∆f is a quasicircle
by Theorem 2.3 and contains a critical point of f by Theorem 2.8. �

7. Maps with one free capture spot

7.1. A one-dimensional deformation space. Now consider the case where f ∈
Ep,q(θ) has precisely one free capture spot. Recall that this means there is a point
ω ∈ ∆f r {0} such that the forward orbit of every captured critical point of f hits
∆f for the first time at ω or at the fixed point 0.

Theorem 7.1. For each t ∈ D∗ there exists an entire map ft ∈ Ep,q(θ) with the
following properties:

(i) ft is conjugate to f by a quasiconformal map ϕ : C → C which satisfies
ϕ = ζft

◦ ζ−1
f on γf,r and ∂ϕ = 0 off Ωf,r for some 0 < r < 1.

(ii) The free capture spot ωt = ϕ(ω) ∈ ∆ft
r {0} has conformal position t.

The map ft with these properties is unique. Moreover, the family {ft}t∈D∗ depends
holomorphically on t.

Proof. To show existence of ft, let t0 := ζ−1
f (ω) ∈ D∗ and fix a small ε and a radius r

so that
0 < ε < min{|t|, |t0|} ≤ max{|t|, |t0|} < r < 1.

Let β : D → D be a quasiconformal map such that

β(t0) = t,

(7.1) β ◦Rθ = Rθ ◦ β,
and

(7.2) β = id in Dε ∪ Ar,1.

The conformal structure µ := β∗(µ0) on D is Rθ-invariant and has bounded dilatation.
Define a conformal structure ν on C by first setting ν := (ζ−1

f )∗(µ) on ∆f , then

spreading it along the iterated preimages of ∆f using appropriate branches of f−n

and letting ν = µ0 elsewhere. Evidently, ν is f -invariant and of bounded dilatation,
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and ν = µ0 off the iterated preimages of ∆r r ∆ε. Let ϕ : C → C be the unique
quasiconformal solution of ϕ∗(µ0) = ν normalized by the conditions ϕ(0) = 0 and
ϕ′(0) = 1. The conjugate map ft := ϕ ◦ f ◦ ϕ−1 is holomorphic, hence it belongs to
Ep,q by Corollary 3.2. Moreover, ft has a Siegel disk ∆ft

= ϕ(∆f) of rotation number
θ centered at 0. The composition ϕ ◦ ζf ◦ β−1 : D → ∆ft

preserves µ0, conjugates Rθ

to ft, and has derivative 1 at the origin. Hence ϕ ◦ ζf ◦ β−1 = ζft
and the conformal

radius of ∆ft
is 1. Thus, ft ∈ Ep,q(θ) and

ζ−1
ft

(ωt) = (β ◦ ζ−1
f )(ω) = β(t0) = t,

which means the conformal position of ωt is t. Uniqueness of ft follows from Theo-
rem 6.1.

It remains to show that ft depends holomorphically on t. Fix t1 ∈ D∗, suppose
t1 6= t0, and construct the maps β, ϕ and the conformal structures µ, ν as above.
Consider the conformal structure sµ on D for |s| < 1+ δ, where δ > 0 is small enough
to guarantee sµ has bounded dilatation. Let βs : D → D be the unique solution of the
Beltrami equation β∗

s (µ0) = sµ subject to the normalization βs(0) = 0 and βs(1) = 1.
Then β0 = id, β1 = β, and βs depends holomorphically on s by the Measurable
Riemann Mapping Theorem. Observe that R∗

θ(sµ) = sµ since Rθ is holomorphic.
Hence βs ◦Rθ ◦ β−1

s is a conformal automorphism of the disk, which can only be the
rotation Rθ itself. It follows that βs commutes with Rθ, so

βs(e
2πinθz) = e2πinθβs(z)

for all integers n. For each z 6= 0 choose a sequence {nk} of integers such that
e2πinkθ → |z|/z as k → ∞. Substituting n = nk in the above equation and letting
k → ∞, we obtain

βs(|z|) =
|z|
z
βs(z)

whenever 0 < |z| < 1. In other words, z 7→ βs(z)/z depends only on |z|. Since this
function is holomorphic in D∗

ε ∪Ar,1, it must be constant in each of D∗
ε and Ar,1. The

normalization βs(1) = 1 gives βs(z) = z in Ar,1, while we obtain βs(z) = asz in Dε,
where as 6= 0 depends holomorphically on s.

Now let ϕs : C → C be the unique solution of ϕ∗
s(µ0) = sν normalized so that

ϕs(0) = 0 and ϕ′
s(0) = as. Then ϕ0 = id, ϕ1 = ϕ, and ϕs also depends holomorphi-

cally on s. By a similar argument as above, the map ϕs ◦ f ◦ ϕ−1
s belongs to Ep,q(θ)

and its linearizing map is ϕs ◦ ζf ◦ β−1
s . It follows from the uniqueness of the family

{ft} that

(7.3) ϕs ◦ f ◦ ϕ−1
s = fβs(t0).

The non-constant holomorphic function s 7→ t = βs(t0) sends a neighborhood of s = 1
onto a neighborhood of β1(t0) = t1. Let t 7→ s(t) be a local inverse branch of this
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map defined on a small slit-disk neighborhood N of t1. By (7.3), the map t 7→ ft

from N to Ep,q(θ) can be written as a composition of holomorphic maps

t 7→ s(t) 7→ ϕs(t) ◦ f ◦ ϕ−1
s(t),

so is itself holomorphic. Since this is true of every t1 6= t0 and every choice of the
small slit-disk neighborhood N of t1, it follows that t 7→ ft is holomorphic in D∗. �

For simplicity, we denote the Siegel disk ∆ft
by ∆t, the invariant curves γft,r by

γt,r, and the linearizing map ζft
by ζt.

Lemma 7.2. The family of linearizing maps ζt : D → ∆t depends holomorphically
on t ∈ D∗.

Proof. Let t0 ∈ D∗. By Theorem 7.1, any two maps in the family {ft} are qua-
siconformally conjugate. The conjugacy maps repelling (resp. attracting) cycles to
repelling (resp. attracting) cycles. It also maps indifferent cycles to indifferent cycles,
preserving the multipliers. It follows that the repelling cycles of ft move holomor-
phically without collision. Since these cycles are dense in the Julia set, the λ-lemma
[MSS] implies there is a disk neighborhood N of t0 over which J(ft) moves holomor-
phically. This holomorphic motion restricts to a motion of ∂∆t over N . As Sullivan
shows in [Su], this implies the existence of a holomorphic family of Riemann maps
{χt : D → ∆t}t∈N with χt(0) = 0. By Schwarz lemma, χt(z) = ζt(λtz) for some
constant λt with |λt| = 1. By the normalization ζ ′t(0) = 1, we see that

λt = χ′
t(0) =

1

2πi

∫

|z|=1/2

χt(z)

z2

depends holomorphically on t ∈ N as well, so λt = λ is in fact independent of t. It
follows that for each fixed z, the map t 7→ ζt(z) = χt(λ

−1z) is holomorphic in N . �

Lemma 7.3. For each 0 < r < 1 there is a constant K(r, f) > 1 such that the
invariant curve γt,r ⊂ ∆t is a K(r, f)-quasicircle whenever 0 < |t| < 1/2.

The proof shows that the constant K actually depends on r and the family {ft}
(and not its individual element f). The distinction is however immaterial since soon
we will show that K can be chosen independent of both r and {ft} (see Lemma 7.6).

Proof. The family of linearizing maps {ζt : D → ∆t}t∈D∗ is normal, so any limit
function of ζt as t→ 0 is normalized and univalent in D. By Lemma 7.2, for each z ∈ D

the map t 7→ ζt(z) is holomorphic in D∗ and stays bounded as t → 0 by normality.
Hence t = 0 is a removable singularity of this map. Setting ζ0(z) := limt→0 ζt(z), it
follows that the extended family {ζt}t∈D depends holomorphically on t, and ζt → ζ0
locally uniformly in D as t→ 0.

Now fix 0 < r < 1. By Slodkowski’s improved λ-lemma [Sl], the holomorphic
motion

ζt ◦ ζ−1
0 : ζ0(Tr) → γt,r
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of the Jordan curve ζ0(Tr) extends to a holomorphic motion of the plane C which is
(1+ |t|)/(1−|t|)-quasiconformal. If K(r, f) denotes the quasicircle constant of ζ0(Tr),
it follows that γt,r is a 3K(r, f)-quasicircle whenever 0 < |t| < 1/2. �

7.2. Surgery on the family {ft}. We now look at the effect of the surgery map Sr

of §4 on the family {ft}. Fix 0 < r < 1. The quasiconformal map of Theorem 4.6,
which initially conjugates ft to Sr(ft) off ∆t,r only, can be easily modified, first inside
∆t,r and then along Ωt,r by pull-backs, to obtain a global quasiconformal conjugacy
between ft and Sr(ft). It follows from the uniqueness part of Theorem 7.1 that Sr(ft)
must belong to the family {ft}. Thus, at the level of parameters, Sr induces a map
σr : D∗ → D∗ so that

Sr(ft) = fσr(t).

Lemma 7.4. For each 0 < r < 1,

σr(t) = t whenever r < |t| < 1.

Hence there is a constant K, depending only on p, q, θ, such that the invariant curve
γt,r is a K-quasicircle whenever r < |t| < 1.

Proof. When r < |t| < 1, every critical orbit of ft hitting ∆t,r must land at 0.
In this case the assumptions of Theorem 6.1 hold for f = ft, g = Sr(ft) and the
quasiconformal conjugacy ϕ = ϕt given by Theorem 4.6. It follows that Sr(ft) = ft,
as required.

The second assertion follows from Corollary 5.8. �

Lemma 7.5. For each 0 < r < 1,

lim
t→0

σr(t) = 0.

Proof. Recall the maps involved in the construction of Sr(ft): the reflection It : Ĉ → Ĉ

(§4.1), the standard extension Ht : D → D and the quasiconformal maps ξt, ψt : C →
C (§4.4). Since by Corollary 4.7, z 7→ (ψt ◦H−1

t )(z/r) is the linearizing map for fσr(t),
it is not hard to see that

(7.4) σr(t) = rHt(ξt(ωt)),

where ωt = ζt(t) is the free capture spot of ft. By Lemma 7.3 and Corollary 4.1, It
and hence ξt can be chosen K(r, f)-quasiconformal whenever 0 < |t| < 1/2. The map
ξt ◦ ζt : Dr → D is K(r, f)-quasiconformal fixing the origin, hence uniformly Hölder
continuous of exponent 1/K(r, f). It follows that

lim
t→0

ξt(ωt) = lim
t→0

(ξt ◦ ζt)(t) = 0.

By Corollary 5.7, the standard extension Ht : D → D is K-quasiconformal for some
K independent of t and r. Since Ht(0) = 0,

lim
t→0

Ht(ξt(ωt)) = 0.
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This, in view of (7.4), proves the lemma. �

We can now prove the following improvement of Lemma 7.3:

Lemma 7.6. There exists a constant K, depending only on p, q, θ, such that the
invariant curve γt,r is a K-quasicircle whenever 0 < r < 1 and 0 < |t| < 1/2.

Proof. Let 0 < r < 1 and K be the constant given by Corollary 5.8, so the invariant
curve γσr(t),r is a K-quasicircle for all t ∈ D∗. Letting t → 0 and making use of
Lemma 7.5, we see by an argument similar to the proof of Theorem 2.3 that the
Jordan curve ζ0(Tr) is a K-quasicircle. The last part of the proof of Lemma 7.3 then
shows that γt,r is a 3K-quasicircle whenever 0 < |t| < 1/2. �

Theorem 7.7. There exists a constant K, depending only on p, q, θ, such that the
invariant curve γt,r is a K-quasicircle whenever 0 < r < 1 and t ∈ D∗.

Proof. Fix 0 < r < 1 and four distinct points a, b, c, d ∈ T (in this cyclic order).
Define a holomorphic map Z : D∗ → C by

Z(t) := Cr(ζt(ra), ζt(rb), ζt(rc), ζt(rd)),

where Cr is the cross-ratio given by (2.3). By Theorem 2.5, Lemma 7.4 and Lemma 7.6,
there exists a constant M > 1, depending only on p, q, θ, such that

|Z(t)| ≤M if r < |t| < 1 or 0 < |t| < 1/2.

It follows from the Maximum Modulus Principle that |Z| ≤M throughout D∗. Since
this holds for every 0 < r < 1 and every quadruple (a, b, c, d), another application of
Theorem 2.5 shows that γt,r is a K-quasicircle for some K > 1 which depends only
on M , hence only on p, q, θ. �

Proof of the Main Theorem when f has one free capture spot. Embed f in the family
{ft} given by Theorem 7.1. By Theorem 7.7 the invariant curve γf,r is a K-quasicircle
for someK depending only on p, q, θ, hence independent of r. The rest of the argument
is as before. �

8. The general case

Now we address the case of an f ∈ Ep,q(θ) with two or more free capture spots.
We will perform a cut-and-paste surgery on f to construct a new map g ∈ Ep,q(θ)
with at most one free capture spot. Even though g is no longer conjugate to f , there
is a quasiconformal map of the plane which sends ∂∆f to ∂∆g . The special cases of
the Main Theorem proved in §6 and §7 then show that ∂∆g is a quasicircle passing
through a critical point. Hence the same must be true of ∂∆f .
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8.1. The preimages of ∆r. Fix an f ∈ Ep,q(θ). For simplicity, we once again drop
the subscript f from our notations. According to [EL], all the Fatou components
of a transcendental entire map with a bounded set of critical and asymptotic values
must be simply-connected. In particular, the connected components of f−n(∆) are
simply-connected Fatou components, which can be bounded or unbounded (in the
non-polynomial case where q > 0, unbounded preimages of ∆ always exist). For each
n ≥ 1, set

Γn := the collection of the connected components of f−n(∆) r f−n+1(∆).

If U ∈ Γn for some n > 1, Corollary 3.4 shows that f(U) ∈ Γn−1. However, if U ∈ Γ1,
the image f(U) is either ∆ or ∆ r {0}.

The capture radius of f is the number in [0, 1) defined by

κ := max{|ζ−1(ĉ)| : ĉ is a capture spot of f},
where ζ : D → ∆ is the linearizing map for f . Alternatively, κ is the smallest radius
r for which the annulus ∆ r ∆r is disjoint from the critical orbits of f . Note that
κ = 0 if and only if f has no free capture spot.

Let 0 < r < 1 and n ≥ 1. For each U ∈ Γn, define

Ur := f−n(∆r) ∩ U.
Lemma 8.1. Ur is a simply-connected domain whenever κ < r < 1.

The proof shows that for every 0 < r < 1, each component of Ur is simply-
connected. We need the condition κ < r < 1 only to guarantee Ur is connected.

Proof. Let W be a component of Ur, η be a simple closed curve in W and O be the
bounded component of C r η. Since ∂O = η ⊂ W , we have f ◦n(z) ∈ ∆r if z ∈ ∂O.
Since f ◦n is an open mapping, the same holds if z ∈ O, proving O ⊂W . Thus, W is
simply-connected.

To show connectivity of Ur, take any s with κ < s < r and note that by Theorem 3.3
the restriction of f ◦n to each component of U r Us is a covering map onto ∆ r ∆s.
Hence the radial foliation of ∆ r ∆s pulls back under f−n to a foliation of U r Us

by analytic arcs. Moreover, each leaf of the latter foliation lands at a well-defined
point of ∂Us. Hence we can define a deformation retraction U → Us by sending each
point of U r Us to the landing point of the leaf passing through it, and keeping Us

fixed pointwise. Thus Us is connected and by letting s → r it follows that Ur must
be connected also. �

8.2. Action of f on immediate preimages of ∆r. Throughout we fix a radius r
such that κ < r < 1.

Lemma 8.2. Suppose U ∈ Γ1 and Ur is bounded. Then ∂Ur is a Jordan curve and
f : Ur → ∆r is a finite-degree branched covering.
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Proof. By Lemma 3.8, Ur is bounded by a Jordan curve. Evidently f(Ur) ⊂ ∆r and
f(∂Ur) ⊂ ∂∆r = γr. Hence f : Ur → ∆r is a proper holomorphic map. As such, it
must be a finite-degree branched covering. �

Here is the corresponding statement when Ur is unbounded:

Lemma 8.3. Suppose U ∈ Γ1 and Ur is unbounded. Then ∂Ur is a disjoint union of
finitely many simple analytic arcs tending to ∞ in both directions. The map f : Ur →
∆r or ∆r r {0} is an infinite-degree branched covering with finitely many branched
points. More precisely, if ϕ : Ur → D and ψ : ∆r → D are conformal isomorphisms
with ψ(0) = 0, then the induced map F := ψ ◦ f ◦ ϕ−1 : D → D is an inner function
of the form

(8.1) F (z) = B(z) exp

(
A(z) + 1

A(z) − 1

)
;

here A,B : D → D are finite Blaschke products, the degree of A is equal to the number
of ends of Ur (equivalently, the number of components of ∂Ur), and the degree of B
is equal to the number of zeros of f in Ur.

Proof. The claim on ∂Ur follows from Lemma 3.8 since ∂Ur ⊂ f−1(γr) and f−1(γr)
has finitely many components. None of these components is a Jordan curve since Ur

is simply-connected and unbounded.

Let B : D → D be a finite Blaschke product having the same zeros of the same
multiplicities as F (set B ≡ 1 if F has no zeros). The map G := F/B : D → D∗

lifts under the universal covering D → D∗ given by z 7→ exp((z + 1)/(z − 1)) to a
holomorphic map A : D → D. We show that A is proper and its degree is equal to
the number of ends of Ur.

The conformal isomorphisms ϕ and ψ extend analytically across the boundaries ∂Ur

and γr = ∂∆r. The image ϕ(∂Ur) is of the form T r {a1, . . . , ak}, where a1, . . . , ak

are distinct and k is the number of ends of Ur. Since f(∂Ur) = γr, it follows that F
(hence G) extends analytically across each of the k arcs of T r {a1, . . . , ak}, mapping
these arcs to T (however, the representation (8.1) will show that the non-tangential
limit of F (hence G) at each aj is 0).

Lifting under z 7→ exp((z + 1)/(z − 1)), we see that A extends analytically across
each arc of T r {a1, . . . , ak}, mapping these arcs to T. To check properness of A,
it is therefore enough to show that every sequence {zi} in D converging to some aj

has a subsequence for which A(zi) → 1. This is evident if there is a subsequence of
{zi} for which F (zi) → 0. Otherwise {F (zi)} stays away from 0. After passing to a
subsequence, we may assume that {F (zi)} is contained in an annulus Aa,b (0 < a <
b ≤ 1) containing no critical value of F (if all but finitely many of the F (zi) happen
to be on a circle Ts which contains a critical value of F , simply replace each zi by a
generic z′i nearby so that |F (z′i)| < s and |A(zi) − A(z′i)| < 1/i). By Lemma 3.8, the
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preimage of each boundary circle of Aa,b has finitely many components, so F−1(Aa,b)
must have finitely many components as well. Moreover, each such component is either
an annulus compactly contained in D or else simply-connected having accumulation
points on T. After passing to a further subsequence, we may assume that {zi} is
contained a single component W of F−1(Aa,b), which must be simply-connected since
{zi} ⊂ W tends to aj ∈ T so W cannot be compactly contained in D. Thus, the
map F : W → Aa,b is a universal covering and there is a conformal isomorphism

F̂ : W → {z : log a < Re(z) < log b} such that F = exp(F̂ ). Since {zi} tends to aj ,
it follows that

(8.2) | Im(F̂ (zi))| → ∞ as i→ ∞.

On the other hand, W is simply connected and B has no zeros in there, so there
is a lift B̂ : W → C satisfying B = exp(B̂). Moreover, since {B(zi)} converges to

B(aj) ∈ T, the sequence {B̂(zi)} has to tend to a well-defined value of logB(aj) on
the imaginary axis. In particular,

(8.3) | Im(B̂(zi))| remains bounded as i→ ∞.

Now both (A+1)/(A− 1) and F̂ − B̂ are lifts of G in W under the exponential map,

so after adding an appropriate integer multiple of 2πi to B̂ we can arrange that

A+ 1

A− 1
= F̂ − B̂ throughout W.

By (8.2) and (8.3), the imaginary part of the left side along {zi} is unbounded. This
easily implies A(zi) → 1, as required.

Thus, as a proper holomorphic map, A : D → D is a finite Blaschke product. The
above argument shows that A−1(1) = {a1, . . . , ak}, so the degree of A is k. �

Corollary 8.4. Suppose U ∈ Γ1 and Ur is unbounded. Let

k := the number of ends of Ur,

ℓ := the number of zeros of f in Ur,

m := the number of critical points of f in Ur.

Then
m = k + ℓ− 1.

Proof. The Blaschke products A and B of Lemma 8.3 have degrees k and ℓ, respec-
tively. The critical points of F are the roots of the rational equation

B′(z) − 2A′(z)B(z)

(A(z) − 1)2
= 0,

so there are 2(k+ ℓ− 1) of them counting multiplicities. Since F commutes with the
reflection z 7→ 1/z and has no critical point on T, precisely half of its critical points
must be in D, which shows m = k + ℓ− 1. �
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8.3. Action of f on further preimages of ∆r. We continue assuming κ < r < 1.

Lemma 8.5. Suppose U ∈ Γn for some n > 1, so V := f(U) ∈ Γn−1. Then Ur is
bounded if and only if Vr is bounded. The map f : Ur → Vr is always a finite-degree
branched covering.

Proof. Suppose first that Ur is bounded. Then clearly Vr = f(Ur) is also bounded
and ∂Ur and ∂Vr are both analytic Jordan curves. The inclusion f(∂Ur) ⊂ ∂Vr shows
that f : Ur → Vr is proper, hence a finite-degree branched covering.

Now suppose Ur is unbounded. We have V 6= ∆ since n > 1. By Lemma 3.7,
f : Ur → Vr is a proper map, hence a finite-degree branched covering. To see Vr is
also unbounded in this case, suppose by way of contradiction that Vr is bounded by
a Jordan curve. Choose conformal isomorphisms ϕ : Ur → D and ψ : Vr → D so
the map B := ψ ◦ f ◦ ϕ−1 : D → D is proper. Take an a ∈ T such that the radial
line L landing at a has its preimage η := ϕ−1(L) ⊂ Ur tending to ∞. The image
f(η) ⊂ Vr lands at the well-defined point ψ−1(B(a)) ∈ ∂Vr. But this would contradict
Theorem 3.5. �

Remark 8.6. We can now conclude that for each U ∈ Γn, the boundary ∂Ur has
finitely many components. For n = 1, this follows from Lemma 3.8, and the general
case follows from Lemma 8.5 by induction on n.

8.4. Modifying f on critical preimages of ∆r. Suppose that f ∈ Ep,q(θ) has
two or more free capture spots and max{κ, 1/2} < r < 1. We first assign a center

oU to each iterated preimage U of the Siegel disk ∆ as follows. Set o∆ := 0 and
ω := ζ(1/2) ∈ ∆r. If U ∈ Γ1 and Ur is bounded, then f(Ur) = ∆r (Lemma 8.2) and
we choose the center oU arbitrarily from the finite set f−1(0)∩U . If U ∈ Γ1 and Ur is
unbounded, then f(Ur) ⊃ ∆r r {0} (Lemma 8.3) and we choose the center oU from
the infinite set f−1(ω)∩U . Suppose n > 1 and we have defined the centers of all the
iterated preimages of ∆ in Γj for 1 ≤ j ≤ n−1. If U ∈ Γn, then V := f(U) ∈ Γn−1 and
f(Ur) = Vr (Lemma 8.5), and we choose the center oU from the finite set f−1(oV )∩U .
This finishes the inductive definition of the centers. Note that the assignment U 7→ oU

respects the action of f :

f(oU) = of(U) for all U ∈
⋃

n≥2

Γn.

Now suppose U ∈ Γn for some n ≥ 1 and Ur contains at least one critical point
of f . We will modify f on Ur so that the new quasiregular map has a single branch
point at oU . We will distinguish three cases:

• Case 1. Ur is bounded. If V := f(U), it follows from Lemma 8.5 that Vr is
also bounded, both ∂Ur and ∂Vr are analytic Jordan curves and f : Ur → Vr is a
branched covering of some degree d ≥ 2. Take quasiconformal maps ϕ : Ur → D and
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ψ : Vr → D, with ϕ(oU) = ψ(oV ) = 0, such that

f = ψ−1 ◦ πd ◦ ϕ on ∂Ur,

where πd : z 7→ zd. Replace f in Ur with

f̂ := ψ−1 ◦ πd ◦ ϕ.
Thus f̂ = f on ∂Ur and f̂ : Ur → Vr is a degree d quasiregular branched covering
with a single branch point at oU which is ramified over oV .

• Case 2. Ur is unbounded and n > 1. If V := f(U), it follows from Lemma 8.5
that Vr is unbounded and f : Ur → Vr is a branched covering of some degree d ≥ 2.
Take conformal isomorphisms ϕ : Ur → D and ψ : Vr → D, with ϕ(oU) = ψ(oV ) = 0.
The induced map B := ψ ◦ f ◦ ϕ−1 : D → D is proper, hence a degree d Blaschke
product. If 0 < s < 1 is close to 1, there are quasiconformal maps ϕ̂ : B−1(Ds) → D

and ψ̂ : Ds → D, both fixing the origin, such that

ψ̂ ◦B ◦ ϕ̂−1 = πd on T.

Replace f in Ur with

f̂ :=

{
ψ−1 ◦ ψ̂−1 ◦ πd ◦ ϕ̂ ◦ ϕ in ϕ−1(B−1(Ds))

f elsewhere in Ur.

Note that the simply-connected domain ϕ−1(B−1(Ds)) is compactly contained in Ur,

so this modification does not change f near ∞. As in Case 1, the map f̂ : Ur → Vr

is a degree d quasiregular branched covering with a single branch point at oU which
is ramified over oV .

• Case 3. Ur is unbounded and n = 1. Take a conformal isomorphism ϕ : Ur → D

with ϕ(oU) = 0 and let ψ := (1/r)ζ−1 where ζ : D → ∆ is the linearizing map of f .
By Lemma 8.3, the induced map F := ψ ◦ f ◦ϕ−1 : D → D has the form (8.1), where
A,B : D → D are finite Blaschke products, degA = k ≥ 1 is the number of ends of
Ur and degB = ℓ ≥ 0 is the number of zeros of f in Ur.

To modify f in Ur in a way similar to the Case 1 or 2 above, we will need the
following

Lemma 8.7. There exists an infinite-degree quasiregular branched covering map F̂ :
D → D with ℓ zeros and a single branch point of local degree k + ℓ at the origin
ramified over F̂ (0) = 1/2, which coincides with F in a neighborhood of T.

Proof. We first construct an infinite-degree branched covering G : D → D with the
required mapping properties. We then modify it to obtain a quasiregular map F̂
which has the additional property that it coincides with F near T. For 1 ≤ j ≤ k, let
bj := e2πij/k. Take “petals” {Πj}1≤j≤k+ℓ in D such that (i) Πj ∩ Πk = {0} for j 6= k;
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Figure 6. Petals Πj and strips Σj used in the construction of G. Here
k = 3 and ℓ = 2. The dots in Π4 and Π5 indicate the zeros of G.
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(ii) ∂Πj is smooth except at 0; (iii) for 1 ≤ j ≤ k, ∂Πj is tangent to T at bj ; (iv)
for k + 1 ≤ j ≤ k + ℓ, Πj is compactly contained in D. For each 1 ≤ j ≤ k, define
G : Πj → D∗

1/2 to be a universal covering so that G(0) = 1/2 and G(z) → 0 as z → bj
non-tangentially. Similarly, for each k + 1 ≤ j ≤ k + ℓ, define G : Πj → D1/2 to be

a conformal isomorphism so that G(0) = 1/2. The complement D r
⋃k+ℓ

j=1 Πj is the

union of strips {Σj}1≤j≤k, where the labeling is chosen so that Σj has ends at bj and
bj+1 mod k (see Fig. 6). Define G : Σj → A1/2,1 to be a universal covering compatible
on the boundary with the definition of G on the petals. Evidently G : D → D can be
constructed in a piecewise smooth fashion. The resulting map is an infinite-degree
branched covering with a unique branch point of local degree k+ ℓ at 0 ramified over
G(0) = 1/2. Moreover, G has ℓ zeros, one in each petal Πj for k + 1 ≤ j ≤ k + ℓ.

With F = B exp((A+ 1)/(A− 1)) as above, let A−1(1) := {a1, . . . , ak}, where we
label the aj counterclockwise. For small enough ε > 0, there is a component Dj of
F−1(Dε) homeomorphic to a disk which is tangent to T at aj , and the map F : Dj →
D∗

ε is covering. Similarly, there is a component Sj of F−1(A1−ε,1) homeomorphic to a
strip which has ends at aj and aj+1 mod k, and the map F : Sj → A1−ε,1 is covering.
Take a radial segment L from the circle Tε to the circle T1−ε which avoids the critical
values of F . For each j take a lift Rj of L which connects ∂Sj to ∂Dj near bj and
another lift Lj+1 of L which connects ∂Sj to ∂Dj+1 near bj+1 mod k (note that there
are countably many choices for such lifts). Let Ij be the segment on ∂Sj from Rj to
Lj+1 and Jj be the segment on ∂Dj from Lj to Rj . Let Θ be the positively oriented
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Figure 7. Construction of the Jordan curve Θ for the map F . Here
k = 3 and ℓ = 2. The curves F (I1), F (I2), F (I3) have winding num-
bers 6, 5, 7 and the curves F (J1), F (J2), F (J3) have winding numbers
−5,−6,−5, respectively. Hence F (Θ) has winding number 2, which is
equal to ℓ as in (8.4).

FI3

I1

I2

J1

J2

J3

D1

D2

D3

S1

S2

S3

a1

a2

a3

R1

R2

R3

L1

L2

L3

0

L

Tε

T1−ε

Jordan curve in D formed by concatenating the following arcs:

L1 → J1 → R1 → I1 → · · · → Lk → Jk → Rk → Ik.

By the Argument Principle,

(8.4) ℓ = ind(F (Θ), 0) =

k∑

j=1

ind(F (Ij), 0) −
k∑

j=1

ind(F (Jj), 0),

where ind(·, 0) denotes the winding number (compare Fig. 7).

There is a completely similar construction for the map G, namely, let D′
j :=

G−1(Dε) ∩ Πj and S ′
j := G−1(A1−ε,1) ∩ Σj , choose arcs R′

j , L
′
j , I

′
j, J

′
j and construct

the Jordan curve Θ′ by the corresponding concatenation of these arcs. The point is
that for any choice of the lifts R′

j and L′
j, we also have

ℓ = ind(G(Θ′), 0) =
k∑

j=1

ind(G(I ′j), 0) −
k∑

j=1

ind(G(J ′
j), 0),

so by selecting the lifts Rj, Lj , R
′
j , L

′
j sufficiently close to the corresponding ends we

can arrange ind(G(I ′j), 0) = ind(F (Ij), 0) and ind(G(J ′
j), 0) = ind(F (Jj), 0) for all j.
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Figure 8. Left: The singular foliation |F | = const., where F : D → D

is the inner function induced by f : Ur → ∆r when Ur is unbounded.
In this example, F has m = 4 simple critical points and ℓ = 2 zeros,
and the k = 3 marked points on ∂D correspond to the ends of Ur near
infinity, so k + ℓ − m = 1 as in Corollary 8.4. Right: The singular
foliation |F̂ | = const. of the modified quasiregular map F̂ : D → D of
Lemma 8.7, with a single branch point of local degree k+ℓ = m+1 = 5
at the origin.

Once this is achieved, we can define a piecewise smooth homeomorphism Φ : Θ → Θ′

which satisfies F = G ◦Φ, simply by following F with an appropriate branch of G−1.
As Θ and Θ′ are quasicircles (their finitely many corners have all 90◦ angles), there
is a quasiconformal extension of Φ mapping the interior of Θ to that of Θ′, with
Φ(0) = 0. The map F̂ : D → D defined by

F̂ :=

{
G ◦ Φ inside Θ

F elsewhere

has the required properties. �

Fig. 8 illustrates an example.

Back to our discussion of modifying f , we can now replace f in Ur with

f̂ := ψ−1 ◦ F̂ ◦ ϕ
The map f̂ : Ur → ∆r is an infinite-degree quasiregular branched covering with a
single branch point of local degree k + ℓ at oU which is ramified over ω := ζ(r/2).
Note that this modification does not change f near ∞.
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Proof of the Main Theorem in the general case. Let f ∈ Ep,q(θ) have two or more free

capture spots. Define the modified map f̂ on every iterated preimage of ∆f containing

a critical point, as above. Extend f̂ to a quasiregular map C → C by setting it equal
to f elsewhere. Note in particular that f̂ = f in a neighborhood of ∞. The map
f̂ admits an invariant conformal structure µ of bounded dilatation: it suffices to set
µ = µ0 on ∆f , define

µ := (f̂ ◦n)∗(µ) on f̂−n(∆f ) = f−n(∆f )

for every n ≥ 1, and set µ = µ0 elsewhere. This µ is clearly f̂ -invariant by the con-
struction. It has bounded dilatation since f̂ fails to be holomorphic on at most finitely
many of the iterated preimages of ∆f . Let ϕ : C → C be the unique quasiconformal
map which solves the Beltrami equation ϕ∗(µ0) = µ and satisfies ϕ(0) = 0, ϕ′(0) = 1.

The conjugate map g := ϕ ◦ f̂ ◦ ϕ−1 preserves µ0, hence is entire. Since g and f̂ are
quasiconformally conjugate and f̂ = f near infinity, the proof of Corollary 3.2 shows
that g ∈ Ep,q. Since g has a Siegel disk of rotation number θ and conformal radius 1
centered at 0, we actually have g ∈ Ep,q(θ). By the construction of f̂ , the map g has
at most one free capture spot. It follows from the special cases of the Main Theorem
proved in §6 and §7 that ∂∆g is a quasicircle passing through a critical point. Since
∂∆f = ϕ−1(∂∆g), the same must be true of ∂∆f , which completes the proof. �
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Sup. (4) 16 (1983) 193-217.

[MNTU] S. Morosawa, Y. Nishimura, M. Taniguchi, and T. Ueda, Holomorphic dynamics, Cam-
bridge University Press, Cambridge, 2000.

[P] R. Perez-Marco, Fixed points and circle maps, Acta Math. 179 (1997) 243-294.
[S] M. Shishikura, Herman’s theorem on quasisymmetric linearization of analytic circle home-

orphisms, manuscript, 1990.
[Si] C. L. Siegel, Iteration of analytic functions, Ann. of Math. (2) 43 (1942) 607-612.
[Sl] Z. Slodkowski, Holomorphic motions and polynomial hulls, Proc. Amer. Math. Soc. 111

(1991) 347-355.
[Su] D. Sullivan, Quasiconformal homeomorphisms and dynamics III: Topological conjugacy

classes of analytic endomorphisms, manuscript.
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